首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Flow properties at pH 5.5-7.5 of whey protein isolate (WPI)-xanthan solutions containing 0-0.5 w/w% xanthan were studied by viscosimetry, although rigidity and fracture properties of the corresponding heat-set gels (90°C, 30 min) were determined by uniaxial compression. All the studied solutions displayed generalized shearthinning flow behaviour. Synergistic WPI-xanthan interactions has been revealed by observing that rheological parameters [σmsf, K, n, η (γ)] characterizing blends were larger than those calculated from the two separated solutions. Such a behaviour was attributed to segregative phase separation of whey proteins and xanthan. Effects of xanthan on WPI-xanthan gel properties both depended on pH and xanthan concentration. Simultaneous increased xanthan concentration and decreased pH inhibited gelation of WPI-xanthan blends. Regarding gel strength, synergistic WPI-xanthan interactions were observed at pH >7.0 and low xanthan concentration (0.05 or 0.1 w/w%). Antagonism between the two macromolecules occurred at low xanthan concentration and pH ≤6.5, and high xanthan concentration (0.2 or 0.5 w/w%) at all pH tested. Low xanthan concentration rendered mixed gels more brittle than protein gels, and high xanthan concentration decreased pH effects on gel stress-strain relationships. The balance between strong thermal aggregation of concentrated whey proteins - in presence of incompatible xanthan -, high viscosity of blends and repulsive surface forces of protein molecules was thought to be at the origin of WPI-xanthan gel mechanical properties.  相似文献   

2.
Milk protein solutions [10% protein, 40/60 whey protein/casein ratio containing whey protein concentrate (WPC) and low-heat or high-heat milk protein concentrate (MPC)] containing fat (4% or 14%) and 70–80% water, form gels with interesting textural and functional properties if heated at high temperatures (90 °C, 15 min; 110 °C, 20 min) without stirring. Adjustment of pH before heating (HCl or glucono-δ-lactone) produces soft, spoonable gels at pH 6.25–6.6, but very firm, cuttable gels at pH 5.25–6.0. Gels made with low-heat MPC, WPC and low fat gave some syneresis; high-fat gels were slightly firmer than low-fat gels. Citrate markedly reduced gel firmness; adding calcium had little effect on firmness, but increased syneresis of low-heat MPC/WPC gels. The gels showed resistance to melting, and could be boiled or fried without flowing. Microstructural analysis indicated a network structure of casein micelles and fat globules interlinked by denatured whey proteins.  相似文献   

3.
Mixed gels of gelatin and whey protein concentrate were investigated, as well as their pure systems, by tensile tests and by dynamic oscillatory measurements. The systems were studied for homogeneous particulate whey protein gels at pH 5.4 and for inhomogeneous particulate whey protein gels at pH 4.6. The influence on the systems of the Bloom number of the gelatin component has also been investigated. Results of the fracture properties, such as stress and strain at fracture, indicate a transition in rheological properties. Results of the elastic modulus, obtained by tensile measurements, as well as the storage modulus, obtained by dynamic oscillatory measurements, both agree with predictions for phase inversions from the Takayanagi models as modified by Clark, which are in agreement with the fracture properties. The transition points are different for the different mixed gel series but take place between 1 and 3 wt% gelatin and 8 wt% whey protein concentrate, depending on factors such as the microstructure of the whey protein concentrate. Dynamic oscillatory measurements showed that gel formation of whey protein concentrate is unaffected by the presence of gelatin, which is in agreement with light microscopy results. Light microscopy revealed that the mixed gel systems were bicontinuous and that the whey protein network structure was unaffected by the presence of gelatin. It is postulated that the predicted phase inversions of the mixed gels are due to a shift in rheological properties without any phase inversions in the microstructure.  相似文献   

4.
采用L-组氨酸(L-His)作为蛋白凝胶功能性的增强剂,将其加入乳清分离蛋白溶液中制备热诱导凝胶,研究L-His对乳清蛋白结构及其凝胶特性的影响。结果表明:在乳清蛋白等电点(pI 5.2)时蛋白形成尺度约1 700 nm、具有极小比表面积且几乎不带电的蛋白聚集体,远离蛋白等电点时则所形成的聚集体大小约为400 nm;L-His抑制蛋白聚集体的形成而减小粒径、显著提高聚集体比表面积,促进蛋白分子结构展开并提高其带电量。在经历热诱导后,乳清蛋白在其等电点时形成持水性差的白色凝胶,而在其他pH值时则形成持水性高的黄色凝胶且越远离等电点,胶体黄度值越大;L-His的加入对凝胶颜色变化无显著影响,但能够显著提高凝胶的持水性(P<0.05);有效提高凝胶的质地特性,特别是在pH 7.59和pH 9.74时显著提高乳清蛋白凝胶的弹性及咀嚼性(P<0.05)。这些质构变化可能主要归结于L-His改变了凝胶内的氢键、二硫键和疏水作用力的重排。总之,L-His修饰乳清蛋白结构而改变其凝胶性能且同时受到pH值的影响。  相似文献   

5.
The influence of pH (4.5-6.5), sodium chloride content (125-375 mM), calcium chloride content (10-30 mM), protein concentration (70-90 g/l) and lactose content on the gel hardness of goat whey protein concentrate (GWPC) in relation to the origin of the acid whey (raw or pasteurized milk) was studied using a factorial design. Gels were obtained after heat treatment (90 degrees C, 30 min). Gel hardness was measured using texture analyser. Only protein concentration and pH were found to have a statistically significant effect on the gel hardness. An increase in the protein concentration resulted in an increase in the gel hardness. GWPC containing 800g/kg protein formed gels with a hardness maximum at the pHi, whereas GWPC containing 300 g/kg protein did not form true gels. Whey from pasteurized milk formed softer gels than whey from raw milk. A high lactose content (approximately 360 g/kg) also reduced the gelation performance of GWPC.  相似文献   

6.
Whey protein gel formed at 10% (w/v) whey protein concentration, 0.5% E/S, pH 7.0, 55°C and 2.5 mM CaCl2 concentration had an average particle size of 23.46 μm, hardness of 0.46, cohesiveness of 0.13 and adhesiveness of 1.40, and the gel showed semisolid, smooth and creamy texture. There were no distinct changes in gel textural properties after heating at 80 and 90°C for 5 min, respectively, or being kept at 4°C for 1 month. The textural properties of the gel showed no significant difference after its pH was adjusted to 4.5, 5.5 and 7.5 compared with that of pH 6.5 (control gel). However, the average particle size significantly increased after being adjusted to pH 4.5 and pH 5.5. Transmission electron micrographs showed that protease‐induced gel possessed much looser aggregate structure compared with heat‐induced compact gel, which may give support to its potential application in low‐fat foods that no need of extensive heating.  相似文献   

7.
The effect of heating rate and pH on fracture properties and held water (HW) of globular protein gels was investigated. The study was divided into 2 experiments. In the 1st experiment, whey protein isolate (WPI) and egg white protein (EWP) gels were formed at pH 4.5 and 7.0 using heating rates ranging from 0.1 to 35 °C/min and holding times at 80 °C up to 240 min. The 2nd experiment used one heating condition (80 °C for 60 min) and probed in detail the pH range of 4.5 to 7.0 for EWP gels. Fracture properties of gels were measured by torsional deformation and HW was measured as the amount of fluid retained after a mild centrifugation. Single or micro-phase separated conditions were determined by confocal laser scanning microscopy. The effect of heating rate on fracture properties and HW of globular protein gels can be explained by phase stability of the protein dispersion and total thermal input. Minimal difference in fracture properties and HW of EWP gels at pH 4.5 compared with pH 7.0 were observed while WPI gels were stronger and had higher HW at pH 7.0 as compared to 4.5. This was due to a mild degree of micro-phase separation of EWP gels across the pH range whereas WPI gels only showed an extreme micro-phase separation in a narrow pH range. In summary, gel formation and physical properties of globular protein gels can be explained by micro-phase separation. PRACTICAL APPLICATION: The effect of heating conditions on hardness and water-holding properties of protein gels is explained by the relative percentage of micro-phase separated proteins. Heating rates that are too rapid require additional holding time at the end-point temperature to allow for full network development. Increase in degree of micro-phase separation decreases the ability for protein gels to hold water.  相似文献   

8.
Changes in physical properties of whey protein gels following addition of emulsified fat were investigated. Gels were made by heating mixtures of dialyzed whey protein isolate at pH 4.60 with and without emulsified fat droplets. Addition of emulsified fat improved the gel-like qualities of these systems. Gel strength progressively increased upon addition of emulsified fat up to 30.00% by weight. Mean droplet size 1.85 km produced the greatest reinforcement of gel strength. Gels made with intermediate concentrations of protein were most sensitive to the effect. The elastic moduli and viscosities of whey protein gels at pH 4.60 increased with fat content, whereas syneresis decreased upon addition of fat.  相似文献   

9.
10.
11.
Non-fat milk model systems containing 5% total protein were investigated with addition of micro- or nanoparticulated whey protein at two levels of casein (2.5% and 3.5%, w/w). The systems were subjected to homogenisation (20 MPa), heat treatment (90 °C for 5 min) and chemical (glucono-delta-lactone) acidification to pH 4.6 and characterised in terms of denaturation degree of whey protein, particle size, textural properties, rheology and microstructure. The model systems with nanoparticulated whey protein exhibited significant larger particle size after heating and provided acid gels with higher firmness and viscosity, faster gelation and lower syneresis and a denser microstructure. In contrast, microparticulated whey protein appeared to only weakly interact with other proteins present and resulted in a protein network with low connectivity in the resulting gels. Increasing the casein/whey protein ratio did not decrease the gel strength in the acidified milk model systems with added whey protein aggregates.  相似文献   

12.
Organoleptic properties of skimmed milk fermented gels are progressively demanding to produce optimal quality yogurts. Chr‐Hansen trademark registered cultures were used to produce low‐protein (3.4%) gels to assess the ability to redesign the sensorial and textural properties with the choice of starter culture. Resulting gels were assessed for sensorial, textural, rheological, and microstructural properties and compared with a commercial control (4.5% protein). Mouth thickness, syneresis, firmness, elasticity, and consistency values were lower for polysaccharides‐producing cultures. Such cultures contributed to the higher creaminess and tended to give higher ropiness. Observed differences among microstructures of the gel were minute. Microstructural and rheological data corresponded and reflected the instrumental and sensory interpretations. Strong correlations were observed between sensory and instrumental data. Nonprobiotics cultures resulted in promising overall gel properties compared with probiotic cultures according to the principal component analysis. Yet probiotic cultures resulted in lower syneresis than nonprobiotic cultures. Thus, the choice of bacterial culture modifies the sensorial and textural properties of fermented gel with strong correlations, as a result of altered gel network formation with the production of polysaccharides. Inferior textural and sensorial quality aspects, particularly at low protein levels, have negative impact on consumer demand of low protein yogurts. Thus, we attempted to gain required gel textural and sensorial properties with a choice of starter culture with a low protein level. Resulting gel properties at lowered protein content with different starter cultures are not fully known. The present study compares the effect of probiotic and nonprobiotic starter cultures on gel properties, as gel texture and sensory properties are of great interest and thus not willing to be compromised. In addition, we examined the overall texture profile of studied cultures and correlate with sensory properties. Therefore, reducing protein level in milk and achieving required gel properties with the choice of appropriate starter culture is of great commercial interest as a cost‐cutting strategy to produce low‐cost optimum quality yogurt.  相似文献   

13.
Large deformation rheological tests were employed to determine the textural differences in heat‐induced gel systems. Three different large deformation rheological methods (viscosity index and apparent elasticity, texture profile analysis (TPA) and torsional fracture) were employed to study the dependence of the ion type on the textural properties of heat‐induced mixed protein–gum gels. Protein–gum mixed solutions were prepared with bovine serum albumin (BSA) or egg white albumin (EWA) (20% w/v) with κ‐carrageenan (KCG), gellan (GLN) or xanthan gums (XNT) (0.5% w/v) at 0.1 M sodium chloride (NaCl), potassium chloride (KCl) or no added salt. Despite inherent differences in protein type, the main effect on the textural properties evaluated was for the kind of salt added, since potassium ions, with a strong influence on KCG and GLN gelation, affected the parameters related to the structure or hardness of the samples. There was no significant effect on parameters associated with sample ductility or elasticity. GLN formed stronger gels than KCG, whereas XNT did not perform as well in gel formation since it does not contribute to protein matrix formation. The results indicated that potassium may be substituted for sodium ions at low ionic strengths in foods where the incorporation of KCG or GLN helps to improve texture and related features.  相似文献   

14.
为研究乳酸菌右旋糖酐对蚕豆蛋白食品相关性质的影响,采用哈克流变仪和质构仪等测定了添加不同浓度右旋糖酐时GDL诱导的酸致蚕豆蛋白复合凝胶质构和流变特性等指标。结果表明:添加右旋糖酐能显著增加蚕豆蛋白凝胶保水性,空白组蚕豆蛋白凝胶保水性为60.38%,1%右旋糖酐与蚕豆蛋白形成的复合凝胶保水性为70.08%(p<0.05);右旋糖酐浓度在0.25%~1%之间,对复合蛋白凝胶色泽有一定影响;0.5%右旋糖酐与蚕豆蛋白形成的复合凝胶强度为0.27 N,与空白组蚕豆蛋白凝胶(0.37 N)差异显著,可软化含高蚕豆蛋白食品质构特性;右旋糖酐/蚕豆蛋白复合凝胶流动曲线符合carreau模型(R2>0.99),具有假塑性流体的特性;应变扫描的弹性模量G''均高于黏性模量G'',说明右旋糖酐/蚕豆蛋白复合凝胶的弹性占主导;频率扫描结果显示添加右旋糖酐可软化蚕豆蛋白凝胶,使凝胶G''、G''降低,更易于加工。在蚕豆食品中添加右旋糖酐可改善蚕豆蛋白的质构和流变特性,为拓展其应用范围提供参考。  相似文献   

15.
In this study, the changes during storage in the physicochemical, textural and sensory properties of nonfat yoghurts fortified with whey proteins, namely whey protein concentrates (WPC), whey protein isolates and whey protein hydrolysates, were investigated. Enrichment of nonfat yoghurt with the whey protein additives (1% w/v) had a noticeable effect on pH, titratable acidity, syneresis, water‐holding capacity, protein contents and colour values on the 14th day of storage (< 0.01). The addition of whey proteins to the yoghurt milk led to increases in the hardness, cohesiveness and elasticity values, resulting in improved textural properties. The addition of WPC improved the texture of set‐type nonfat yoghurt with greater sizes in the gel network as well as lower syneresis and higher water holding capacity. This study suggests that the addition of whey protein additives used for fortification of yoghurt gave the best textural and sensory properties that were maintained constant during the shelf life.  相似文献   

16.
Processed cheese spreads were made with and without whey proteins under varying cooking pH conditions. The processed cheeses were cooked at one pH value and at the end of the cooking process the pH was adjusted to the final product pH of 5.7. The rheological properties and whey protein denaturation levels of the processed cheese spreads were measured. The rheological properties and texture of the processed cheeses containing whey proteins could be markedly modified by varying the cooking pH during processing, whereas those without whey proteins were unaffected. These textural modifications could not be explained solely by the changes in whey protein denaturation during cooking. It is proposed that the interactions of the whey proteins during cooking affect the processed cheese texture, and that these interactions are affected by the pH of the processed cheese during processing.  相似文献   

17.
Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.  相似文献   

18.
Correlations between instrumental texture, sensory texture and sweetness perception were studied in whey protein concentrate (WPC) gels at different pH (4 and 7), sucrose (0–40%, w/w) and whey protein (10–20% w/w) content. The presence of sucrose modified the structure of WPC gels, mainly at pH 4, making the gel structure more homogeneous and with smaller pores. Sucrose also increased the solid behaviour of gels, their water holding capacity, hardness and adhesiveness. Sweetness perception decreased as protein concentration increased, and was higher in gels at pH 4 than in gels at pH 7. A good correlation was obtained between the instrumental and sensory attributes hardness, cohesiveness and elasticity.  相似文献   

19.
Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat‐induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air‐drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels.  相似文献   

20.
A controlled creatine-release system has been developed from whey protein-based gels. Their functionalization was carried out by aeration and sodium ions induced “cold gelation” processes. The effect of protein concentration in the aerated whey protein gels at pH 7.0 and 8.0 was analyzed. Physicochemical properties of the aerated gels were evaluated. It was possible to obtain the ions induced whey protein aerated gel with well distributed creatine and different microstructure as well as rheological properties. Different protein concentrations and pH enabled obtaining gels with different rheological properties, texture, air fraction, diameter of air bubbles, microstructure and surface roughness. An increase in the protein concentration enhanced the hardness of the samples, regardless of their pH. The mechanical strength of gels prepared at pH 8 were higher than those obtained at pH 7, as was manifested by the smaller storage modulus of the latter. The former gel exhibited a microstructure between particulate and fine-stranded. A stronger gel matrix produced smaller air bubbles. Aerated gels produced at pH 7.0 had higher roughness than those obtained at pH 8.0. Optimal conditions for inclusion of air bubbles into the gel matrix were: 9% protein concentration at pH 8.0 and this aerated gel was selected for digestion in the artificial stomach. There is a small conversion of creatine to creatinine in the artificial stomach digestion process (9.6% after 6 h). The diffusion of creatine crystals from the aerated gel matrix was the mechanism responsible for the release process. Aerated whey protein gels can be used as matrices for time extended releasing of creatine in the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号