首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT:  Lactobacillus acidophilus 4461, L. acidophilus 4962, L. casei 290, and L. casei 2607 were used to hydrolyze isoflavone glycosides (IG) to biologically active forms—isoflavone aglycones (IA)—in soymilk (SM) prepared from soy protein isolate (SPI) and soymilk supplemented with 0.5% (w/v) of lactulose (SML). L. acidophilus 4461 utilized the highest level of lactulose (3.01 mg/mL) and L. acidophilus 4962 utilized the least (0.86 mg/mL) at 24 h of incubation. The pH values decreased to 4.00 to 5.00 in SML, while they remained relatively high (6.15 to 6.36) in SM. Supplementation with lactulose significantly ( P < 0.05) enhanced the viable counts of all the 4 Lactobacillus strains. At the end of incubation, the viable counts of Lactobacillus ranged from 8.08 to 8.25 log CFU/mL in SML compared to 6.99 to 7.11 log CFU/mL in SM. Supplementation with lactulose increased the biotransformation of IG to IA after 6 h of incubation. The presence of lactulose in the medium enhanced the biotransformation level of IG to IA by Lactobacillus up to 21.9%. The hydrolysis level of malonyl genistin and acetyl genistin in SML was much higher than in SM by all the 4 probiotic organisms. The biotransformation of IG to IA occurred rapidly during the 1st 12 h of incubation in both SML and SM. Among the 4 Lactobacillus strains, L. acidophilus 4461 biotransformed the highest level (88.8%) of IG to IA in SML compared to 68.2% in SM after 24 h of incubation.  相似文献   

2.
Abstract: This study examined the survival of probiotic bacteria in a model fruit juice system. Three different strains of probiotic bacteria were used in this study: HOWARU Lactobacillus rhamnosus HN001, HOWARU Bifidobacterium lactis HN001, and Lactobacillus paracasei LPC 37. The probiotic bacteria were inoculated into model juice with various vitamins and antioxidants, namely white grape seed extract, green tea extract, vitamin B2, vitamin B3, vitamin B6, vitamin C, and vitamin E. The model juice without any additives was used as a control. Their viability was assessed on a weekly basis using plate count method. The model juice was made with sucrose, sodium citrate, citric acid powder, and distilled water and was pasteurized before use. Our findings showed that probiotic bacteria did not survive well in the harsh environment of the model fruit juice. However, the model juice containing vitamin C, grape extract, and green tea extract showed better survival of probiotic bacteria. The model juice containing grape seed extract, green tea extract, and vitamin C had the same initial population of 8.32 log CFU/mL, and at the end of the 6-wk storage period it had an average viability of 4.29 log CFU/mL, 7.41 log CFU/mL, and 6.44 log CFU/mL, respectively. Juices containing all other ingredients tested had viable counts of <10 CFU/mL at the end of the 6-wk storage period.  相似文献   

3.
ABSTRACT:  Two probiotic strains, Bifidobacterium animalis A and B, were used for the biotransformation of isoflavone glycosides in soymilk prepared from soy protein isolate (SPI) supplemented with skim milk powder (SMP) (SSMP). Unsupplemented soymilk (USM) and reconstituted skim milk powder (RSMP) were used as controls. The numbers of viable microorganisms in these products were enumerated. Lactose and isoflavone contents were quantified using high-performance liquid chromatography (HPLC). Our results showed that there was significantly higher biotransformation of isoflavone glycosides to aglycones in SSMP than that in USM. The levels of biotransformation were 83.96% and 85.43% for B. animalis A and B, respectively, compared to 74.30% and 72.82% for the USM. In addition, lactose utilization by both strains in SSMP was also higher than that in RSMP. At 24 h, 21.16 mg/mL of lactose was utilized in SSMP by B. animalis A compared with that of 16.88 mg/mL in RSMP. Consequently, the pH of SSMP was lower (3.80) than RSMP (4.00). However, the number of viable bacteria in SSMP was slightly lower than that in RSMP but significantly higher than that in USM. It appears that SMP enhanced the biotransformation of isoflavone glycosides to aglycones and SPI increased the lactose utilization by B. animalis A and B.  相似文献   

4.
Pham TT  Shah NP 《Food microbiology》2008,25(5):653-661
Four probiotic bacteria, Lactobacillus acidophilus 4461, L. acidophilus 4962, Lactobacillus casei 290 and L. casei 2607, were used for fermentation of soymilk (SM) prepared from soy protein isolate (SPI) supplemented with skim milk powder (SMP) (SSM). Soymilk and reconstituted skim milk (RSM) were used as controls. Lactose utilization in SSM by these probiotic organisms ranged from 14.97 to 18.15mg/ml, compared to 14.12-16.06mg/ml for RSM. The pH in SSM dropped to 4.07-4.29 compared to 6.15-6.36 for SM and 4.10-4.96 for RSM. The microbial viable counts were also significantly enhanced by up to 0.98logCFU/ml by the supplementation of SMP to SM. The biotransformation level of isoflavone glycosides (IG) to isoflavone aglycones (IA) in SSM ranged from 81.4% to 85.1%, which was 13.9-19.0% higher than that for SM, after 24h of incubation. Most of IG in SSM was completely converted to IA, except malonyl glycitin and malonyl genistin. At the end of the incubation, IA comprised up to 76.8% of total isoflavones in SSM.  相似文献   

5.
ABSTRACT: The purpose of this study was to develop a method for applying an extra coating of palm oil and poly‐L‐lysine (POPL) to alginate (ALG) microcapsules to enhance the survival of probiotic bacteria. Eight strains of probiotic bacteria including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl‐O4, and B. lactis type Bi‐07 were encapsulated using alginate alone or alginate with POPL. Electron microscopy was used to measure the size of the microcapsules and to determine their surface texture. To assess if the addition of POPL improved the viability of probiotic bacteria in acidic conditions, both ALG and POPL microcapsules were inoculated into pH 2.0 MRS broths and their viability was assessed over a 2‐h incubation period. Two bile salts including oxgall bile salt and taurocholic acid were used to test the bile tolerance of probiotic bacteria entrapped in ALG and POPL microcapsules. To assess the porosity and the ability of the microcapsule to hold small molecules in an aqueous environment a water‐soluble fluorescent dye, 6‐carboxyflourescin (6 FAM), was encapsulated and its release was monitored using a UV spectrophotometer. The results indicated that coating the microcapsules with POPL increased the overall size of the capsules by an average of 3 μm ± 0.67. However, microcapsules with added POPL had a much smoother surface texture when examined under an electron microscope. The results also indicated that the addition of POPL to microcapsules improved the average viability of probiotic bacteria by > 1 log CFU/mL when compared to ALG microcapsules at 2 h of exposure to acidic conditions. However, similar plate counts were observed between ALG and POPL microcapsules when exposed to bile salts. This suggests that an extra coating of POPL could be readily broken down by bile salts that are commonly found in the lower gastrointestinal tract (GIT). Upon testing the porosity of the microcapsules, findings suggest that POPL microcapsules were less porous and hold 52.2% more fluorescent dye over a 6‐wk storage period.  相似文献   

6.
ABSTRACT:  Ten probiotic bacteria, including Lactobacillus rhamnosus , Bifidobacterium longum , L. salivarius , L. plantarum , L. acidophilus , L. paracasei , B. lactis type Bl-04, B. lactis type Bi-07, HOWARU L. rhamnosus , and HOWARU B. bifidum , were encapsulated in various coating materials, namely alginate, guar gum, xanthan gum, locust bean gum, and carrageenan gum. The various encapsulated probiotic bacteria were studied for their acid and bile tolerance. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested at pH 2 over a 2-h incubation period. Bile tolerance was tested with taurocholic acid over an 8-h incubation period. The permeability of the capsules was also examined using a water-soluble dye, 6-carboxyflourescin (6-CF). The permeability was monitored by measuring the amount of 6-CF released from the capsules during a 2-w storage period. Results indicated that probiotic bacteria encapsulated in alginate, xanthan gum, and carrageenan gum survived better ( P < 0.05) than free probiotic bacteria, under acidic conditions. When free probiotic bacteria were exposed to taurocholic acid, viability was reduced by 6.36 log CFU/mL, whereas only 3.63, 3.27, and 4.12 log CFU/mL was lost in probiotic organisms encapsulated in alginate, xanthan gum, and carrageenan gum, respectively. All encapsulating materials tested released small amounts of 6-CF; however, alginate and xanthan gum retained 22.1% and 18.6% more fluorescent dye than guar gum. In general, microcapsules made of alginate, xanthan gum, and carrageenan gum greatly improved the survival of probiotic bacteria when exposed to acidic conditions and bile salts.  相似文献   

7.
Both Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 are considered probiotic agents with therapeutic properties. To prepare mother cultures for these organism bacteria, four formulations were made with milk (1% fat) with 0.33% yeast extract (T1); 0.4% inulin (T2); 0.33% yeast extract and 0.4% inulin (T3); and one with no additives (T4). The media were inoculated with 1% probiotic cultures and incubated anaerobically at 37 °C overnight. Low-fat (1%) probiotic yogurts were made. Survival of L. reuteri RC-14 and L. rhamnosus GR-1 was monitored after 1, 7, 14, 21, and 28 days of storage at 4 °C. In all treatments, L. rhamnosus GR-1 survived significantly better (P < 0.05) than L. reuteri RC-14. Survival was highest in media T1 and T3. This study shows that yogurt has the potential to deliver probiotic bacteria to consumers, with L. rhamnosus GR-1 providing excellent shelf life.Industrial relevanceThis study is of relevance to food industry because it deals with the effectiveness of dairy products as a good-vehicle for delivering probiotic microorganisms to consumers. The fermentation of milk into yogurt has gained widespread consumer acceptance in North America and its consumption has increased significantly over the past few years. The normal yogurt cultures, Lactobacillus delbreukii sub-species bulgaricus and Streptococcus thermophilus, are not bile resistant or acid tolerant and thus cannot survive in the intestinal tract, although they may help to lessen the symptoms of lactose intolerance. Various strains of lactic acid bacteria are considered probiotics. Two of the most documented probiotic strains, Lactobacillus reuteri (formerly fermentum) RC-14 and Lactobacillus rhamnosus GR-1 can colonize the intestine and vagina and reduce recurrences of bacterial vaginosis, yeast vaginitis and urinary tract infections. They are bile resistant and survive passage through the human gastrointestinal tract without induction of systemic immune or inflammatory responses. There is no published information on the growth and survival of L. rhamnosus GR-1 and L. reuteri RC-14 in yogurt. The incorporation of L. rhamnosus GR-1 and L. reuteri RC-14 in yogurt is an innovative idea. This research developed a new probiotic yogurt with sufficient viable counts of L. rhamnosus GR-1 accompanied by L. reuteri RC-14. The use of probiotic bacteria, especially those with proven therapeutic effects, in dairy products has attracted a lot of attention from dairy industry and health/wellness industry, and this type of product can provide a bridge between the two industries.  相似文献   

8.
Eleven lactic acid bacteria strains of importance to the dairy industry were subjected to in vitro analyses to determine their probiotic potential. Seven strains were isolated from ewe’s and cow’s milk (Enterococcus faecalis – five –, Lactococcus lactis and Lactobacillus paracasei). Four were obtained from American Type Culture Collection (ATCC), isolated from cheese (Lactobacillus casei 393), human feces (L. paracasei 27092 and Lactobacillus rhamnosus 53103) and used in cheese making (L. lactis 54104). Although none of the strains was able to degrade mucin, all E. faecalis showed, at least, one transferable antibiotic resistance, which excluded them as candidates for addition to foods. Of the remaining six safe strains, L. lactis strains were more tolerant to low pH than Lactobacillus spp.; all were tolerant to pancreatin and bile salts and showed antibacterial activity. The highest level of adhesion to Caco-2 cells was observed with L. lactis 660, even higher than L. rhamnosus ATCC 53103 (recognized probiotic and used as control). The physiological probiotic properties of these strains, mainly isolated from dairy sources, are interesting in view of their use in cheese productions as starter and non starter cultures. The five LAB safe strains studied may have potential as novel probiotics in the dairy foods.  相似文献   

9.
There is currently no authorized or established therapeutic level/dose of probiotics for proposed health benefits; however, a daily probiotic consumption of 108 to 1010 CFU has been recommended. This study determined the survival of 5 individual probiotic strains, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus acidophilus, and Bifidobacterium lactis, along with a mixture of the 5 strains in hypromellose capsules with rice or potato maltodextrin at 4, 25, and 37 °C for 12 mo. Samples were collected monthly and plated on deMan‐Rogosa Sharpe agar with 0.05% l ‐cysteine hydrochloride. Results showed that samples stored at 4 °C had an average count of 108 to 1011 CFU/g of probiotic cells during the 12 mo period, whereas at 25 °C, L. rhamnosus and L. paracasei had an average counts below 108 CFU/g during the storage period. L. rhamnosus was the most vulnerable strain used in this study, having the least viable counts at all 3 storage temperatures. Probiotics stored in rice maltodextrin, on average, had higher probiotic counts compared to those stored in potato maltodextrin. Study suggests that to provide consumers with 108 to 1010 CFU/d of probiotic cells, robust bacterial strains, suitable carriers, and a storage temperature of 4 °C are required.  相似文献   

10.
The objective of this study was to evaluate the suitability of two strains of probiotic bacteria (Bifidobacterium animalis subsp. lactis and Lactobacillus rhamnosus) incorporated individually into Boursin-type goat cheese and their in vitro resistance through the passage of the gastrointestinal tract in the cheese. The viability of B. lactis and Lb. rhamnosus cultures was unaffected throughout 35 days of storage at 4 °C, with a final count of >?7 log CFU/g. No significant difference (p?>?0.05) was observed between probiotic treatments and control in relation to pH and titratable acidity. B. animalis presented greater resistance to the artificial gastric and enteric juices than Lb. rhamnosus, with mean decreases in the initial populations of 0.2 and 4.0 log CFU/g within 35 days of storage, respectively. The addition of probiotic cultures did not affect the consumer acceptance of the goat cheeses. Three segments of consumers with different liking were identified. The results demonstrated that “Boursin” goat cheese is a promising matrix for the incorporation and protection of B. animalis subsp. lactis.  相似文献   

11.
Antagonistic phenomena between strains often occur in mixed cultures containing a bacteriocinogenic strain. A nisin Z producer (Lactococcus lactis ssp. lactis biovar. diacetylactis UL719) and 2 nisin-sensitive strains for acidification (Lactococcus lactis ssp. cremoris ATCC19257) and exopolysaccharide (EPS) production (Lactobacillus rhamnosus RW-9595M) were immobilized separately in gel beads and used to continuously preferment milk at different temperatures, with pH controlled at 6.0 by fresh milk addition. The process showed high volumetric productivity, with an increase from 8.0 to 12.5 L of prefermented milk per liter of reactor volume and hour as the temperature was increased from 27 to 35°C. Lactococcus lactis ssp. lactis biovar. diacetylactis UL719 counts in prefermented and fermented (22-h batch fermentation) milks were stable during 3 wk of continuous fermentation (8.1 ± 0.1 and 8.9 ± 0.2 log cfu/mL, respectively). The L. lactis ssp. cremoris population (estimated with real-time quantitative PCR) decreased rapidly during the first week of continuous culture to approximately 4.5 log cfu/mL and remained constant afterward. Lactobacillus rhamnosus counts in prefermented and fermented milks significantly increased with prefermentation time, with no temperature effect. Nisin Z reached high titers in fermented milks (from 177 to 363 IU/mL), with EPS concentration in the range from 43 to 178 mg/L. Immobilization and continuous culture led to important physiological changes, with Lb. rhamnosus becoming much more tolerant to nisin Z, and Lb. rhamnosus and L. lactis ssp. lactis biovar. diacetylactis UL719 exhibiting large increases in milk acidification capacity. Our data showed that continuous milk prefermentation with immobilized cells can stimulate the acidification activity of low-acidifying strains and produce fermented milks with improved and controlled functional properties.  相似文献   

12.
Thirty isolates of lactobacilli were screened for β-glucosidase production and isoflavones biotransformation. The isolates exhibited enzyme activities in the range of 0.14–3.31 IU. Five highest enzyme producers were assessed for isoflavones biotransformation potential in soymilk that varied greatly among the isolates with an increase of 2–3 fold in genistein and 6–14 fold in daidzein. The biochemical and molecular identification classified the isolates as Lactobacillus rhamnosus. Among isolates, L. rhamnosus D13 was the highest enzyme producer, while L. rhamnosus D7 was the highest isoflavone aglycone producer. Our results are distinct because of no proportional relation between enzyme activity and isoflavones biotransformation. The study further confirms that the degree of biotransformation of isoflavones is characteristic of an individual strain.  相似文献   

13.
ABSTRACT:  The study determined β-glucosidase activity of commercial probiotic organisms for hydrolysis of isoflavone to aglycones in fermenting soymilk. Soymilk made with soy protein isolate (SPI) was fermented with Lactobacillus acidophilus LAFTI® L10, Bifidobacterium lactis LAFTI® B94, and Lactobacillus casei LAFTI® L26 at 37 °C for 48 h and the fermented soymilk was stored for 28 d at 4 °C. β-Glucosidase activity of organisms was determined using ρ-nitrophenyl β-D-glucopyranoside as a substrate and the hydrolysis of isoflavone glycosides to aglycones by these organisms was carried out. The highest level of growth occurred at 12 h for L. casei L26, 24 h for B. lactis B94, and 36 h for L. acidophilus L10 during fermentation in soymilk. Survival after storage at 4 °C for 28 d was 20%, 15%, and 11% greater ( P < 0.05) than initial cell counts, respectively. All the bacteria produced β-glucosidase, which hydrolyzed isoflavone β-glycosides to isoflavone aglycones. The decrease in the concentration of β-glycosides and the increase in the concentration of aglycones were significant ( P < 0.05) in the fermented soymilk. Increased isoflavone aglycone content in fermented soymilk is likely to improve the biological functionality of soymilk.  相似文献   

14.
K. Kailasapathy 《LWT》2006,39(10):1221-1227
The survival and effect of free and calcium-induced alginate-starch encapsulated probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on pH, exopolysaccharide production and influence on the sensory attributes of yogurt were studied over 7 weeks storage. Addition of probiotic bacteria (free or encapsulated) reduced acid development in yogurt during storage. Post-acidification in yogurt with encapsulated probiotic bacteria was slower compared to yogurt with free probiotic bacteria. More exopolysaccharides were observed in yogurts with probiotic cultures compared to those without probiotic cultures. The results showed that there was an increased survival of 2 and 1 log cell numbers of L. acidophilus and B. lactis, respectively due to protection of cells by microencapsulation. The addition of probiotic cultures either in the free or encapsulated states did not significantly affect appearance and colour, acidity, flavour and after taste of the yogurts over the storage period. There were, however, significant differences (P<0.05) in the texture (smoothness) of the yogurts. This study has shown that incorporation of free and encapsulated probiotic bacteria do not substantially alter the overall sensory characteristics of yogurts and microencapsulation helps to enhance the survival of probiotic bacteria in yogurts during storage.  相似文献   

15.
The effect of select parameters (i.e., rye flour ash content, temperature, and dough yield) of the sourdough fermentation on the fermentation activity of different starter cultures (lactic acid bacteria Lactococcus lactis ssp. Lactis, Weissella confusa, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus helveticus, and yeast Kluyveromyces marxianus subsp. Marxianus) was determined. The major metabolic end products of fermentation (D, L-lactic acid, acetic acid, ethanol and glycerol) and the evolution of total phenolic content and folic acid during bread making were measured. Lactobacillus helveticus and Kluyveromyces marxianus allowed obtaining sourdoughs with the highest lactic acid/acetic acid ratios. The mixed starter culture with Lactococcus lactis and Saccharomyces cerevisiae generated the most important quantities of D/L lactic acid. The maximum values of ethanol concentration were obtained in case of the sourdoughs from whole rye flour fermented at lower temperature (30°C) with mixed starter cultures containing Sacchomyces cerevisiae. The fermentation process and type of starter culture are also tools to increase the bioactive compounds, enabling the increase of the phenolic content of the sourdough.  相似文献   

16.
BACKGROUND: Lactococcus lactis is an interesting microorganism with several industrial applications, particularly in the food industry. As well as being a probiotic species, L. lactis produces several metabolites with interesting properties, such as lactic acid (LA) and biosurfactants. Nevertheless, L. lactis is an especially demanding species since it has strong nutritional requirements, implying the use of complex and expensive culture media. RESULTS: The results showed the potential of L. lactis CECT‐4434 as a LA and biosurfactant producer. The economical cost of L. lactis cultures can be reduced by replacing the MRS medium by the use of two waste materials: trimming vine shoots as C source, and 20 g L?1 distilled wine lees (vinasses) as N, P and micronutrient sources. From the hemicellulosic fraction, 14.3 g L?1 LA and 1.7 mg L?1 surfactin equivalent were achieved after 74 h (surface tension reduction of 14.4 mN m?1); meanwhile, a simultaneous saccharification and fermentation process allowed the generation of 10.8 g L?1 LA and 1.5 mg L?1 surfactin equivalent after 72 h, reducing the surface tension by 12.1 units at the end of fermentation. CONCLUSIONS: Trimming vine shoots and vinasses can be used as alternative economical media for LA and cell‐bound biosurfactant production. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Gruels tailored to school-age children and made of soy milk and rice flour with or without total dietary fiber from passion fruit by-product were fermented by amylolytic lactic acid bacteria strains (Lactobacillus fermentum Ogi E1 and Lactobacillus plantarum A6), by commercial probiotic bacteria strains (Lactobacillus acidophilus L10, Lactobacillus casei L26 and Bifidobacterium animalis subsp. lactis B94) and by co-cultures made of one amylolytic and one probiotic strain. The influence of ingredient composition and bacterial cultures on kinetics of acidification, α-amylase activity of the bacteria, apparent viscosity and microstructure of the fermented products was investigated. During fermentation of the gruels, α-amylase activity was determined through the Ceralpha method and apparent viscosity, flux behavior and thixotropy were determined in a rotational viscometer. Rheological data were fitted to Power Law model. The combination of amylolytic and probiotic bacteria strains reduced the fermentation time of the gruels as well as increased the α-amylase activity. The addition of passion fruit fiber exerted less influence on the apparent viscosity of the fermented products than the composition of the bacterial cultures. Scanning electron microscopy provided evidence of exopolysaccharide production by amylolytic bacteria strains in the food matrices tested. The co-cultures made of amylolytic and probiotic bacteria strains are suitable to reduce the fermentation time of a soy milk/rice matrix and to obtain a final product with pH and viscosity similar to yoghurt.  相似文献   

18.
ABSTRACT:  The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus , namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356 , ATCC 4461 , L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 °C, then stored for 14 d at 4 °C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log10 CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 °C. After 24 h, there was a significant increase ( P < 0.05) in soluble calcium. L. acidophilus ATCC 4962 and L. casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased ( P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.  相似文献   

19.
《Food microbiology》2000,17(1):13-22
Lactic acid bacteria (LAB) were isolated from human colon biopsies on LAMVAB by enrichment with different substrates such as lactose derivatives, rye arabinoxylo-oligosaccharides and rye fractions. The selected isolates were tested for their ability to adhere to Caco-2 cells. Only Lactobacillus species were enriched under these conditions. From 161 isolates screened, 28% were identified by ribotyping as Lactobacillus rhamnosus, 29% as L. salivarius, 14% as L. cellobiosus, 13% as L. paracasei and the rest remained unidentified.L. rhamnosus was preferentially enriched by lactulose, L. salivarius by lactobionic acid, L. cellobiosus by lactitol and L. paracasei by arabinoxylo-oligosaccharides. The biopsy-derived strains L. rhamnosus E-97948 andL. paracasei E-97949 have potential for further evaluations in their probiotic and technological properties. Lactulose may have prebiotic effects on colonic LAB by favouring their growth.  相似文献   

20.
本研究通过测定植物乳杆菌58在不同碳源中的生长和产β-葡萄糖苷酶情况,筛选菌株的最适碳源,并确定接种至豆乳的最佳时间.在接种量、糖含量、发酵时间和发酵温度等单因素实验基础上,根据Box-Behnken中心组合原理进行响应面实验设计,以大豆异黄酮苷元含量为指标,进一步优化菌株58发酵豆乳产大豆异黄酮苷元条件.结果显示,植...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号