首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for the architectural design of CMC components that are subjected to multiaxial stress states. In this study, two-dimensional (2D)-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0° and 90° directions were tensile loaded in-plane in the 0° direction and at 45° to this direction. In addition, a 2D triaxially braided MI SiC/SiC composite panel with a higher fiber content in the ±67° bias directions compared with the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23° from the bias fibers). Stress–strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis-loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0° direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on weak regions in the architecture, e.g., minicomposite tows oriented normal to the loading direction and/or critical flaws in the matrix for a given composite stress. Both off-axis-oriented panels also showed relatively good ultimate tensile strength when compared with other off-axis-oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.  相似文献   

2.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

3.
Melt infiltrated SiC/SiC ceramic matrix composite unidirectional (UD) composite specimens were imaged under load using X-ray microtomography techniques in order to visualize the evolution of damage accumulation and to quantify damage mechanisms within the composite such as matrix cracking and fiber breaking. The data obtained from these in situ tensile tests were used in comparison with current models and literature results. Three-dimensional (3D) tomography images were used to measure the location and spacing of matrix cracking that occurred at increasing stress increments during testing within two UD composite specimens. The number of broken fibers and the location of each fiber break gap that occurred within the volume of both specimens were also quantified. The 3D locations of fiber breaks were correlated with the location of each matrix crack within the volume of the specimen and it was found that at the stress scanned directly before failure, most of the fiber breaks occur within 100 microns of a matrix crack.  相似文献   

4.
化学气相渗透2.5维C/SiC复合材料的拉伸性能   总被引:2,自引:0,他引:2  
采用等温减压化学气相浸渗(isothermal low-pressure chemical vapor infiltration,ILCVI)工艺制备了在厚度方向上具有纤维增强的2.5维(2.5 dimensional,2.5D)碳纤维增强碳化硅多层陶瓷基复合材料,从而使一端封口的防热结构部件的制备成为可能.ILCVI致密化后,复合材料的密度、孔隙率分别为1.95~2.1 g/cm3和16.5%~18%.沿经纱和纬纱两个方向对2.5D C/SiC复合材料进行室温拉伸实验.结果表明:复合材料在纵向和横向的拉伸应力-应变均表现为明显的非线性行为.复合材料具有较高的面内拉伸性能,纵横向的拉伸强度分别为326MPa和145MPa,断裂应变分别为0.697%和0.705%.复合材料的拉伸断裂为典型的韧性断裂,经纱和纬纱的断裂都表现为纤维的多级台阶式断裂以及纤维的大量拔出.  相似文献   

5.
《Ceramics International》2023,49(8):12508-12517
Two-dimensional plain-woven silicon carbide (SiC) fiber-reinforced SiC matrix (2D SiC/SiC) composite was prepared by polymer infiltration-pyrolysis (PIP). Matrix cracking mechanisms of the composite were investigated by in situ SEM and nano-CT to grasp tensile damage evolution. Results showed that PIP-SiC matrix possessed low-fracture energy with non-homogeneous distribution, leading to simultaneous initiation of matrix cracking outside transverse fiber bundles and in unreinforced regions. Cracks then got deflected along weak fiber/matrix interface, which accelerated crack proliferation within the composite. With an increase in the stress, cracks subsequently deflected along plain-woven layers and converged to form longitudinal macrocracks. The composite was finally delaminated via sliding.  相似文献   

6.
The relationship between acoustic emission (AE) and damage source areas in SiC/SiC minicomposites was modeled using insights from tensile testing in-scanning electron microscope (SEM). Damage up to matrix crack saturation was bounded by: (1) AE generated by matrix cracking (lower bound) and (2) AE generated by matrix cracking, and fiber debonding and sliding in crack wakes (upper bound). While fiber debonding and sliding exhibit lower strain energy release rates than matrix cracking and fiber breakage, they contribute significant damage area and likely produce AE. Fiber breaks beyond matrix crack saturation were modeled by two conditions: (i) only fiber breaks generated AE; and (ii) fiber breaks occurred simultaneously with fiber sliding to generate AE. While fiber breaks are considered the dominant late-stage mechanism, our modeling indicates that other mechanisms are active, a finding that is supported by experimental in-SEM observations of matrix cracking in conjunction with fiber failure at rupture.  相似文献   

7.
Continuous fiber-reinforced ceramic matrix composites (CMCs) exhibit different damage mechanisms at multiple scales under cyclic loading. In this paper, the tension-tension fatigue behavior of a plain woven SiCf/SiC CMC was investigated, and damage accumulation and evolution process were studied in detail via acoustic emission (AE) method. With the increase of cycles, the material exhibits obvious hysteresis behavior affected by interfacial slip and wear mechanisms. Most of the fibers with radial fracture characteristic have relatively high strength, showing excellent toughening property. In the stepwise cyclic loading process, the Kaiser effect of AE determines the initiation of AE activities at each initial loading moment, which shows obvious nonlinear damage accumulation behavior of the material. High-energy events are related to significant matrix cracking and fiber fracture, and the evolution process of material damage initiation and propagation is monitored in real time.  相似文献   

8.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

9.
This work studied the effect of tough phase Ti3Si(Al)C2 on the mechanical hysteresis behavior of SiC/SiC. Different from continuous fibers reinforced brittle ceramic matrix composites, the mechanical hysteresis behavior of SiC/SiC containing Ti3Si(Al)C2 shows some abnormal phenomena: as peak applied stress increases during cyclic loading-unloading-reloading tests, the thermal residual stress values exhibit highly dispersion and the thermal misfit relief strain shows abnormally slow growth. These abnormal phenomena are caused by the reduction of transvers cracks (perpendicular to loading fibers) and the generation of hoop cracks (parallel to loading fibers). The plastic deformations of Ti3Si(Al)C2 prevents the transverse cracking of modified matrix, while promoting the hoop cracking of SiC matrix prepared by chemical vapor infiltration (CVI-SiC). Hoop cracking occurs within the transition zone containing amorphous SiO2 layer and carbon layer in CVI-SiC matrix. The combination of weak transition zone and strong modified matrix finally leads to the occurrence of hoop cracking.  相似文献   

10.
《Ceramics International》2021,47(21):29646-29652
In the present study, the fatigue behavior and damage evolution of SiC/SiC minicomposites at elevated temperatures in oxygen-free environment are investigated which are important for their application and are still unclear. The high-temperature fatigue test platform is developed and the fatigue stress-life curve and the stress-strain response are obtained. The test result shows that the life of the material at elevated temperature is shorter than that at room temperature under the same stress level. Moreover, the hysteresis loop width and the residual strain increase with the increasing of the cycles while the hysteresis modulus decreases during the fatigue cycling. The evolution process of matrix cracks is observed using the real-time remote detection system. It is found that matrix cracking is insensitive to the cyclic loading which is similar to room temperature and is due to that the degeneration of the interfacial shear stress reduces the area of high stress in matrix. The fiber/matrix interfacial shear stress under different cycles is determined based on the fatigue modulus of each hysteresis loop. The result shows a fatigue enhancement phenomenon for the interface which is not observed at room temperature.  相似文献   

11.
The damage initiation and R -curve behavior for a two-dimensional (2-D) SiC/SiC woven composite are characterized at ambient temperature and related to in situ microscopic observations of damage accumulation and crack advance. Matrix cracking and crack deflection/branching are observed and dominate fracture behavior in the early loading stage such that primary crack extension occurs at apparent stress intensity values as high as 12 MPam1/2. Linear elastic fracture mechanics (LEFM), though questionable, was assumed to be valid in the early stages of damage initiation prior to primary crack advance, but was clearly invalid once primary crack extension had occurred. Such a high primary crack extension toughness value is confirmed by a renotch technique whereby the crack wake is removed and the fracture resistance drops close to the initial value. Based on microstructural observations, multiple matrix cracks are found to be arrested at fiber bundles. The key to toughening appears to be associated with the mechanics of crack arrest at fiber bundles in the woven architecture. Toughening mechanisms include multiple matrix cracking (similar to microcracking), crack branching, and crack deflection in the crack frontal zone. Application of models to evaluate toughening based on these mechanisms results in values comparable to experimental data. In the regime of primary crack extension, a J -integral technique was applied to investigate the R -curve behavior and results showed a rising JR -curve which started at 1500 J/m2 and reached 6150 J/m2 after about 13 mm of primary crack extension. There was evidence of substantial crack bridging by fiber tows and fibrous pull-out in this regime of crack advance.  相似文献   

12.
Hui Mei  Laifei Cheng 《Carbon》2009,47(4):1034-1042
The mechanical hysteresis of four ceramic matrix composites with different carbon fiber preforms, i.e. needled C/SiC, 2D C/SiC, 2.5D C/SiC, and 3D C/SiC, was investigated and compared during cyclic reloading-unloading tests. An effective coefficient of the fiber volume fraction in the direction of loading (ECFL) was defined to characterize fiber architectures of the preforms. It is shown that an increase in permanent strain and a decrease in stiffness with the applied stress were strongly affected by the ECFL. The thermal residual stress (TRS) and ultimate tensile strength of the composites are predicted theoretically related to the ECFL, and then validated by experimental results and microstructural observations. The predicted results not only demonstrate good agreement with experimental measurements, but also explain why differences in the composite ECFL result in substantial variations in TRS.  相似文献   

13.
王毅强  张立同  成来飞  马军强 《硅酸盐学报》2008,36(8):1062-1068,1078
采用化学气相渗透法制备了2维和2.5维碳纤维增强碳化硅(carbon-fiber-reinforced silicon carbide,C/SiC)复合材料,沿经纱(纵向)和纬纱(横向) 2个方向对2种复合材料进行了室温拉伸性能测试,并从预制体结构和原始缺陷分布的角度对比分析了两者力学性能之间的差异.结果表明:两种C/SiC复合材料均表现出明显的非线性力学行为,在经纱方向和纬纱方向上,2维C/SiC复合材料力学性能表现为各向同性,而2.5维C/SiC复合材料力学性能则表现出明显的各向异性:经纱方向上2.5维C/SiC复合材料的拉伸强度和拉伸模量(326 MPa,153 GPa)均高于2维C/SiC复合材料的(245 MPa,96 GPa),纬纱方向上的(145 MPa,62 GPa)均低于2维C/SiC复合材料的(239 MPa,90 GPa).两种复合材料的拉伸断裂行为均表现为典型的韧性断裂,并伴有大量的纤维拔出.两种复合材料中纱线断裂均呈现出多级台阶式断裂方式,但其断裂位置并不相同.2.5维C/SiC复合材料中由于经纱路径近似于正弦波,弯曲程度较大,在纱线交叉点处造成明显的应力集中,因此经纱多在纱线交叉点处断裂;而纬纱由于其路径近乎直线,应力集中现象不明显,因此纬纱断裂位置呈随机分布.2维C/SiC复合材料中经纱和纬纱由于其路径类似于2.5维C/SiC复合材料中的经纱,因此其断裂位置也多在纱线交叉点处.微观结构观察表明不同的编织结构是造成两种复合材料在不同方向上力学性能差异的主要原因.  相似文献   

14.
《Ceramics International》2022,48(5):6574-6590
Results from fatigue experiments done on a SiC/SiC composite are presented. A micromechanics-based model is used to study the observed behavior under cyclic loading. The model includes consideration of progressive damage, creep and oxidation of the fiber and matrix. Comparison of model predictions with test data showed that the deformation during fatigue in this material is explained primarily by damage in the form of matrix microcracking and interface debonding, in combination with creep under the cyclic load. Stiffness of the material was observed to not change significantly during fatigue indicating that the contribution of fiber fracture to deformation is limited. Fiber fracture however was found to determine final failure of the composite. Failure under cyclic fatigue loading was found to be affected by load transfer from the matrix to the fiber due to damage and creep, and by progressive degradation of the load-carrying fibers due to the combined effect of oxidation and load cycling.  相似文献   

15.
三维编织Cf/SiC复合材料的拉伸破坏行为   总被引:4,自引:6,他引:4  
通过三维编织碳纤维(carbon fiber,Cf)/SiC复合材料样品单向拉伸以及单向拉伸加卸载实验.结合样品断口观察.从宏观上分析了三维编织Cf/SiC复合材料单向拉伸时的力学响应,为进一步描述三维编织Cf/SiC复合材料力学行为奠定了实验基础。实验结果表明:三维编织Cf/SiC复合材料单向拉伸时,卸载模量衰减与应力呈线性关系,残余应变的增加与应力呈二次函数关系。微裂纹主要在编织节点处萌生,沿纤维束界面扩展,最终在编织节点处汇合,导致样品发生破坏。  相似文献   

16.
《Ceramics International》2016,42(15):16535-16551
The hysteresis loops of C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D and 2.5D woven, 3D braided, and 3D needled at room temperature have been investigated. Based on fiber slipping mechanisms, the hysteresis loops models considering different interface slip cases have been developed. The effects of fiber volume fraction, matrix cracking density, interface shear stress, interface debonded energy, and fibers failure on hysteresis loops, hysteresis dissipated energy, hysteresis width, and hysteresis modulus have been analyzed. An effective coefficient of fiber volume fraction along the loading direction (ECFL) was introduced to describe fiber preforms. The hysteresis loops, hysteresis dissipated energy and hysteresis modulus of unidirectional, cross-ply, 2D and 2.5D woven, 3D braided and 3D needled C/SiC composites have been predicted.  相似文献   

17.
2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征   总被引:1,自引:0,他引:1  
通过单向拉伸和分段式加载-卸载实验,研究了二维编织C/SiC复合材料的宏观力学特性和损伤的变化过程.用扫描电镜对样品进行微观结构分析,并监测了载荷作用下复合材料的声发射行为.结果表明:在拉伸应力低于50MPa时,复合材料的应力-应变为线弹性;随着应力的增加,材料模量减小,非弹性应变变大,复合材料的应力-应变行为表现为非线性直至断裂.复合材料的平均断裂强度和断裂应变分别为23426MPa和0.6%.拉伸破坏损伤表现为:基体开裂,横向纤维束开裂,界面层脱粘,纤维断裂,层间剥离和纤维束断裂.损伤累积后最终导致复合材料交叉编织节点处纤维束逐层断裂和拔出,形成斜口断裂和平口断裂.  相似文献   

18.
Compressive strength of 2D-C/SiC composite was investigated from room temperature(RT) to 1600?°C at present work. Damage evolution was investigated by conducting loading/unloading tests at RT and the damage mechanisms were elucidated by observing the fracture morphology. It is found that compressive strength of 2D-C/SiC was retained until 1200?°C and then decreased with increasing temperature. The variation of compressive strength is closely related to the degradation in matrix modulus. The compressive damage of 2D-C/SiC starts at the buckling of 0° fiber and is followed by opening and closing of original pores, initiation and growth of longitudinal interbundle cracks, separation of 90° fiber bundles by longitudinal cracks, matrix cracking from intrabundle pores, propagation of matrix cracks into 0° fiber bundles, connection of cracks in 0° fiber bundles and longitudinal cracks in 90° fiber bundles.  相似文献   

19.
The fatigue failure of ceramic matrix composites at elevated temperatures was predicted using the micromechanics method. Multiple micro-damage models were developed to describe the evolution processes of matrix cracking, interface wear, and fiber fracture during fatigue loading. On this basis, the fatigue life was calculated. To validate the fatigue failure model, multi-scale experiments were conducted. In the macroscale, the S-N curve was obtained by the fatigue test. In the microscale, multiple in-situ measuring methods were developed through which the matrix crack density, the interfacial shear stress, and the percentage of fracture fibers were obtained. Both the macroscale and microscale experimental results were in good agreement with the predicted results. Therefore, the fatigue failure model developed in the present work is accurate.  相似文献   

20.
In this paper, the mechanical hysteresis and damage evolution in C/SiC ceramic matrix composites (CMCs) under cyclic tension-tension fatigue loading at room and elevated temperatures in air and in inert atmosphere and different loading frequencies are investigated. The fatigue hysteresis loops models considering multiple matrix cracking modes are developed to establish the relationships between fatigue hysteresis loops, fatigue hysteresis dissipated energy, and fiber/matrix interface shear stress. The evolution of fatigue hysteresis dissipated energy and interface shear stress vs applied cycles is analyzed. It was found that the interface shear stress degradation rate increases with fatigue peak stress, and loading frequency from 40 to 375 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号