首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silk fibers have been used in textiles for more than 5,000 years and as a suturing material for many centuries. The recent development of new applications for silks include drug delivery. An overview of this new field is provided, summarizing the development of emerging drug delivery applications which include silk-based nanomedicines and transdermal delivery systems We also highlight some of the challenges in developing silk-based drug delivery systems.  相似文献   

2.
Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems, describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems.  相似文献   

3.
4.
Devices based on liquid crystal display technology, ranging from watches to flat panel displays, have proliferated over the past few decades and can now be found in all conceivable aspects of everyday life. It is surprising that a crucial part in the construction of such displays, namely the alignment layer, which dictates the surface alignment of mesogenic molecules, relies essentially on a mechanical rubbing process which was invented 100 years ago. In this paper, recent developments in the construction of alignment layers (also called command layers) based on the self‐assembly of molecular and macromolecular components are discussed. Two topics are highlighted: (i) tuneable layers formed by hierarchical assembly of siloxane oligomers and phthalocyanine dyes on indium‐tin‐oxide surfaces and (ii) command layers formed by self‐assembly of porphyrin trimers. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
为了制备具有蛋白药物结肠靶向释放性能的新型药物载体,采用了水相溶液滴定反应法,分别以牛血清白蛋白(BSA)和乳铁蛋白(LF)为模型蛋白质药物,制得壳聚糖/纤维素磷酸钠(NaCS)/三聚磷酸钠(TPP)载药微球。利用电镜SEM和显微镜观测拍照,对微球的表面和截面形貌进行了表征,发现微球球形规则且颗粒大小均一。同时进行了体外药物模拟释放试验,考察了载药微球先后经过模拟胃液、模拟小肠液和模拟结肠液时的释药性能,及不同的释放条件和制造条件对于微球释药性能的影响,尤其考察了不同蛋白药物和不同干燥方式的影响。结果表明由临界点干燥法制得的负载乳铁蛋白(LF)微球在模拟胃液和小肠液释放量中5 h内只释放出不到20%的蛋白药物,而后在结肠模拟液中4 h内释放出蛋白药物80%以上。这些结果表明,壳聚糖/NaCS/TPP体系具有一定的作为结肠靶向药物释放载体的应用潜力。  相似文献   

6.
Molecularly imprinted polymers (MIPs) have been proven to be a promising candidate for drug delivery systems (DDS) due to their ability to provide a sustained and controlled drug release, making them useful for treating a wide range of medical conditions. MIP-based DDS offer many advantages, including the administration of a smaller drug doses, due to the higher drug payload or targeted delivery, resulting in fewer side effects, as well as the possibility of attaining high concentrations of the drug in the targeted tissues. Whether designed as drug reservoirs or targeted DDS, MIPs are of great value to drug delivery as conventional drug formulations can be redesigned as DDS to overcome the active pharmaceutical ingredient’s (APIs) poor bioavailability, toxic effects, or other shortcomings that previously made them less efficient or unsuitable for therapy. Therefore, MIP design could be a promising alternative to the challenging research and development of new lead compounds. Research on MIPs is primarily conducted from a material science perspective, which often overlooks some of their key pharmaceutical requirements. In this review, we emphasize the specific features that make MIPs suitable for clinical use, from both a material science and a biopharmaceutical perspective.  相似文献   

7.
The transferrin receptor (TfR) mediates transcytosis across the blood-brain barrier (BBB), which offers a promising approach for the non-invasive delivery of therapeutics into the brain parenchyma. Employing the recombinant homodimeric murine TfR ectodomain, prepared in a biochemically functional state, we have selected a cognate Anticalin via phage display and bacterial cell surface display from a random library based on the human lipocalin 2 (Lcn2). After affinity maturation, several engineered lipocalin variants were identified that bind murine TfR in a non-competitive manner with the natural ligand (transferrin ⋅ Fe3+), among those an Anticalin – dubbed FerryCalin – exhibiting a dissociation constant (KD) of 3.8 nM. Epitope analysis using the SPOT technique revealed a sequential epitope in a surface region of TfR remote from the transferrin-binding site. Due to the fast kon rate and short complex half-life, as evidenced by real-time surface plasmon resonance (SPR) measurements, FerryCalin, or one of its related mutants, shows characteristics as a potential vehicle for the brain delivery of biopharmaceuticals.  相似文献   

8.
A new series of nonionic gemini amphiphiles have been synthesized in a multi-step chemoenzymatic approach by using a novel A2B2-type central core consisting of conjugating glycerol and propargyl bromide on 5-hydroxy isophthalic acid. A pair of hydrophilic monomethoxy poly(ethylene glycol) (mPEG) and hydrophobic linear alkyl chains (C12/C15) were then added to the core to obtain amphiphilic architectures. The aggregation tendency in aqueous media was studied by dynamic light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. The nanotransport potential of the amphiphiles was studied for model hydrophobic guests, that is, the dye Nile Red and the drug Nimodipine by using UV/Vis and fluorescence spectroscopy. Evaluation of the viability of amphiphile-treated A549 cells showed them to be well tolerated up to the concentrations studied. Being ester based, these amphiphiles exhibit stimuli-responsive sensitivity towards esterases, and a rupture of amphiphilic architecture was observed in the presence of immobilized Candida antarctica lipase (Novozym 435), thus facilitating release of the encapsulated guest from the aggregate.  相似文献   

9.
With the intensive development of polymeric biomaterials in recent years, research using drug delivery systems (DDSs) has become an essential strategy for cancer therapy. Various DDSs are expected to have more advantages in anti-neoplastic effects, including easy preparation, high pharmacology efficiency, low toxicity, tumor-targeting ability, and high drug-controlled release. Polyurethanes (PUs) are a very important kind of polymers widely used in medicine, pharmacy, and biomaterial engineering. Biodegradable and non-biodegradable PUs are a significant group of these biomaterials. PUs can be synthesized by adequately selecting building blocks (a polyol, a di- or multi-isocyanate, and a chain extender) with suitable physicochemical and biological properties for applications in anti-cancer DDSs technology. Currently, there are few comprehensive reports on a summary of polyurethane DDSs (PU-DDSs) applied for tumor therapy. This study reviewed state-of-the-art PUs designed for anti-cancer PU-DDSs. We studied successful applications and prospects for further development of effective methods for obtaining PUs as biomaterials for oncology.  相似文献   

10.
11.
Supramolecular structures assembled via noncovalent interactions have found diverse applications in mechanical, biological, electronic, and manufacturing-related fields. Ionic interactions represent key noncovalent interactions, which can be used, for example, to create highly ordered, responsive, conductive, reversible, and/or viscoelastic supramolecular assemblies. The recent advances in the field of ionic supramolecular assemblies, including those prepared from polymers, small molecules, or a combination of the two are reviewed. The versatility and simplicity of constructing ionic supramolecular assemblies are illustrated through several examples. Finally, the outstanding issues and potential opportunities are discussed to stimulate critical discussions and encourage further discovery.  相似文献   

12.
Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future.  相似文献   

13.
Self-assembly of small peptides offers unique opportunities for the bottom-up construction of supramolecular catalysts that aim to emulate the efficiency and selectivity of natural enzymes. Small, information-rich, simple molecules based on amino acids can self-organise autonomously into complex systems with emergent catalytic properties. The power of noncovalent interactions can be used to construct supramolecular peptidic tertiary structures. Moreover, specific functional groups present in amino acid side-chains may present either a catalytic activity by themselves or be able to bind cofactors such as metal ions. In this scenario, although relevant progress has been achieved in recent years, promising applications in biomaterials science are foreseen. In this review, we discuss the state-of-the-art of this approach at the interface between supramolecular chemistry and peptide science.  相似文献   

14.
Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed.  相似文献   

15.
Local drug delivery is an effective strategy for achieving direct and instant therapeutic effects. Current clinical treatments have fallen short and are limited by traditional technologies. Bioadhesive nanoparticles (NPs), however, may be a promising carrier for optimized local drug delivery, offering prolonged drug retention time and steadily maintained therapeutic concentrations. In addition, the possibility of clinical applications of this platform are abundant, as most polymers used for bioadhesion are both biodegradable and biocompatible. This review highlights the major advances in the investigations of polymer-based bioadhesive nanoparticles and their innumerable applications in local drug delivery.  相似文献   

16.
Drug delivery systems based on polyurethane have been used for the controlled release of chemotherapeutic agents for the treatment of the chronic microbial disease tuberculosis. The drugs used in the investigation were isoniazid, ethionamide and florimicin. An in vitro technique was used to determine the release characteristics of the drugs into model biological media. It was shown that drug release occurs in accordance with first-order kinetics. The influence of drug loadings on release profiles was studied. The possibility of application of the drug delivery systems for tuberculosis treatment was shown by some medical and biological tests. © 1997 SCI  相似文献   

17.
Development of stimuli-responsive supramolecular micelles that enable high levels of well-controlled drug release in cancer cells remains a grand challenge. Here, we encapsulated the antitumor drug doxorubicin (DOX) and pro-photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG), in order to achieve effective drug delivery combined with photo-chemotherapy. The resulting DOX/5-ALA-loaded micelles exhibited excellent light and pH-responsive behavior in aqueous solution and high drug-entrapment stability in serum-rich media. A short duration (1–2 min) of laser irradiation with visible light induced the dissociation of the DOX/5-ALA complexes within the micelles, which disrupted micellular stability and resulted in rapid, immediate release of the physically entrapped drug from the micelles. In addition, in vitro assays of cellular reactive oxygen species generation and cellular internalization confirmed the drug-loaded micelles exhibited significantly enhanced cellular uptake after visible light irradiation, and that the light-triggered disassembly of micellar structures rapidly increased the production of reactive oxygen species within the cells. Importantly, flow cytometric analysis demonstrated that laser irradiation of cancer cells incubated with DOX/5-ALA-loaded A-PPG micelles effectively induced apoptotic cell death via endocytosis. Thus, this newly developed supramolecular system may offer a potential route towards improving the efficacy of synergistic chemotherapeutic approaches for cancer.  相似文献   

18.
Supramolecular hydrogels are 3D, elastic, water-swelled materials that are held together by reversible, non-covalent interactions, such as hydrogen bonds, hydrophobic, ionic, host–guest interactions, and metal–ligand coordination. These interactions determine the hydrogels’ unique properties: mechanical strength; stretchability; injectability; ability to self-heal; shear-thinning; and sensitivity to stimuli, e.g., pH, temperature, the presence of ions, and other chemical substances. For this reason, supramolecular hydrogels have attracted considerable attention as carriers for active substance delivery systems. In this paper, we focused on the various types of non-covalent interactions. The hydrogen bonds, hydrophobic, ionic, coordination, and host–guest interactions between hydrogel components have been described. We also provided an overview of the recent studies on supramolecular hydrogel applications, such as cancer therapy, anti-inflammatory gels, antimicrobial activity, controlled gene drug delivery, and tissue engineering.  相似文献   

19.
The aim of this work was to prepare alginate base film and its properties and application in drug delivery field. In order to achieve this, naproxen as a drug and magnetic nanoparticles were placed into the films. Sodium alginate could be crosslinked and form a gel under extremely mild and environmentally friendly conditions without using toxic solvents and reactants. The polymeric films were analyzed by DSC, SEM, and FT-IR spectroscopy. The in vitro release profiles were established separately in both enzyme-free simulated gastric (pH 1) and intestinal fluids (pH 7.4).  相似文献   

20.
The thermoplastics processing of natural hydrophilic polymers in the presence of water is a recent development with very wide possible applications. Eventually, oil-based polymer materials could be replaced in many applications by inexpensive, natural products from renewable resources. As with conventional thermoplastics, hydrophilic polymer melts may be processed by injection-moulding and extrusion. The present contribution focuses on the injection-moulding of potato starch. The basis of the processing is described. In addition, the rheological behaviour of the starch/water melts during processing is analysed quantitatively to give apparent melt viscosities. The mechanical properties of moulded starch materials and the drug delivery behaviour of starch capsules are discussed. © 1997 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号