首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

ABSTRACT

Salmonella Typhimurium and Listeria monocytogenes are major bacterial pathogens associated with poultry products. A controlled released ClO2 sachet applied with modified atmosphere packaging (MAP) was evaluated for its ability to control the growth of S. Typhimurium and L. monocytogenes on raw chicken breast during refrigerated storage. The fresh chicken samples were inoculated with one or the other of the pathogens at 104 cfu/g, and the packages (with and without ClO2 sachet) were flushed with ambient air or 30% CO2/70% N2 before sealing, and then stored at 4C for up to 21 days. The maximum reduction in MAP plus ClO2 (compared with MAP alone) was 0.68 log cfu/g for S. Typhimurium and 1.87 log cfu/g for L. monocytogenes. Color and pH changes of the chicken breast were observed at 8 µg/h of ClO2 during the storage period.

PRACTICAL APPLICATIONS

We think that the results of the study with the combined treatment of chlorine dioxide (ClO2) and modified atmosphere packaging may enhance the effectiveness of antimicrobials, reduce the amount of agent needed, and decrease the risk of off‐flavors. The applications of the results will be useful for poultry industry to give the significant improvement in shelf life for packaged fresh products.  相似文献   

2.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

3.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

4.
Yunjung Kim  Minhee Kim  Kyung Bin Song 《LWT》2009,42(10):1654-1658
Effect of fumaric acid, chlorine dioxide (ClO2), and UV-C treatment was examined on the inactivation of microorganisms in alfalfa and clover sprouts. Clover sprouts were irradiated with UV-C light (1–10 kJ/m2), and the treatment decreased the population of total aerobic bacteria by 1.03–1.45 log CFU/g. Clover sprouts inoculated with pathogenic bacteria were treated with various concentration of fumaric acid, and 0.5 g/100 ml fumaric acid treatment was the most effective. In addition, the combined treatment of fumaric acid (0.5 g/100 ml)/UV-C (1 kJ/m2) reduced the populations of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes inoculated on clover sprouts by 3.02, 2.88, and 2.35 log CFU/g. Alfalfa sprouts were treated with ClO2, fumaric acid, and the combination of fumaric acid/ClO2. The combined treatment was the most effective, and it reduced the total aerobic bacteria by 3.18 log CFU/g as well as the initial populations of E. coli O157:H7, S. typhimurium, and L. monocytogenes inoculated on alfalfa sprouts by 4.06, 3.57, and 3.69 log CFU/g. These results suggest that the combined treatment of fumaric acid with UV-C or ClO2 can be useful for improving the microbial safety of alfalfa and clover sprouts.  相似文献   

5.
Abstract: Meatballs were prepared by mixing ground beef and spices and inoculated with E. coli O157:H7, L. monocytogenes, and S. enteritidis before packaged in modified atmosphere (3% O2+ 50% CO2+ 47% N2) or aerobic conditions. The packaged samples were irradiated at 0.75, 1.5, and 3 kGy doses and stored at 4 °C for 21 d. Survival of the pathogens, total plate count, lipid oxidation, color change, and sensory quality were analyzed during storage. Irradiation at 3 kGy inactivated all the inoculated (approximately 106 CFU/g) S. enteritidis and L. monocytogenes cells in the samples. The inoculated (approximately 106 CFU/g) E. coli O157:H7 cells were totally inactivated by 1.5 kGy irradiation. D10‐values for E. coli O157:H7, S. enteritidis, and L. monocytogenes were 0.24, 0.43, and 0.41 kGy in MAP and 0.22, 0.39, and 0.39 kGy in aerobic packages, respectively. Irradiation at 1.5 and 3 kGy resulted in 0.13 and 0.36 mg MDA/kg increase in 2‐thiobarbituric acid‐reactive substances (TBARS) reaching 1.02 and 1.49 MDA/kg, respectively, on day 1. Irradiation also caused significant loss of color and sensory quality in aerobic packages. However, MAP effectively inhibited the irradiation‐induced quality degradations during 21‐d storage. Thus, combining irradiation (3 kGy) and MAP (3% O2+ 50% CO2+ 47% N2) controlled the safety risk due to the potential pathogens and maintained qualities of meatballs during 21‐d refrigerated storage. Practical Application: Combined use of gamma irradiation and modified atmosphere packaging (MAP) can maintain quality and safety of seasoned ground beef (meatball). Seasoned ground beef can be irradiated at 3 kGy and packaged in MAP with 3% O2+ 50% CO2+ 47% N2 gas mixture in a high barrier packaging materials. These treatments can significantly decrease risk due to potential pathogens including E. coli O157:H7, L. monocytogenes, and S. enteritidis in the product. The MAP would reduce the undesirable effects of irradiation on quality, and extend the shelf life of the product for up to 21 d at 3 °C.  相似文献   

6.
The survival of 3 pathogens Listeria monocytogenes ATCC19115, Salmonella enterica subsp. enterica ATCC13311, and Escherichia coli ATCC8739 was evaluated over time in ready‐to‐eat (RTE) artichoke products processed or not with the probiotic strain Lactobacillus paracasei LMGP22043. Both probiotic and standard products (final pH about 4.0; aw = 0.98) dressed with oil and packaged in modified atmosphere were inoculated with pathogens at a level of about 3 log CFU/g and stored at 4 ºC for 45 d. Pathogens decreased in the probiotic product in 2 descent phases, without shoulder and/or tailing as observed by fitting the models available in the GInaFit software to the experimental data. S. enterica subsp. enterica was completely inactivated after 14 and 28 d in probiotic and standard products, respectively; E. coli was inhibited in the probiotic food at day 4 (count <detection limit (DL) 1 log CFU/g), while in the standard product, it survived until the end of experiment. L. monocytogenes decreased in the probiotic product at day 1 reaching values below the DL after 14 d, while 21 d were needed in the standard product, and survived in both samples until the end of the experimental period. Therefore, the probiotic strain, representing always more than the 93% of lactic acid bacteria (about 7 log CFU/g) during the entire experimental period, combines the efficacy of a protective culture, which can control the development of pathogens during storage with probiotic benefits.  相似文献   

7.
This study evaluated growth of Listeria monocytogenes inoculated on cooked chicken meat with different marinades and survival of the pathogen as affected by microwave oven reheating. During aerobic storage at 7 °C, on days 0, 1, 2, 4, and 7, samples were reheated by microwave oven (1100 W) for 45 or 90 s and analyzed microbiologically. L. monocytogenes counts on nonmarinated (control) samples increased (P < 0.05) from 2.7 ± 0.1 (day‐0) to 6.9 ± 0.1 (day‐7) log CFU/g during storage. Initial (day‐0) pathogen counts of marinated samples were <0.5 log CFU/g lower than those of the control, irrespective of marinating treatment. At 7 d of storage, pathogen levels on samples marinated with tomato juice were not different (P ≥ 0.05; 6.9 ± 0.1 log CFU/g) from those of the control, whereas for samples treated with the remaining marinades, pathogen counts were 0.7 (soy sauce) to 2.0 (lemon juice) log CFU/g lower (P < 0.05) than those of the control. Microwave oven reheating reduced L. monocytogenes counts by 1.9 to 4.1 (45 s) and >2.4 to 5.0 (90 s) log CFU/g. With similar trends across different marinates, the high levels of L. monocytogenes survivors found after microwave reheating, especially after storage for more than 2 d, indicate that length of storage and reheating time need to be considered for safe consumption of leftover cooked chicken.  相似文献   

8.
This study was designed to evaluate the synergistic antimicrobial effect of nisin and allyl isothiocyanate (AITC) against Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium and Shigella boydii. The synergistic interactions between nisin and AITC were observed against all foodborne pathogens, showing the fractional inhibitory concentrations <1. The populations of L. monocytogenes and S. aureus at the combined treatment of nisin and AITC were decreased to below 1 log CFU mL?1 after 10‐h incubation at 37 °C. The changes in fatty acid profiles of all strains were substantially influenced by nisin alone and the combined treatment of nisin and AITC. A good agreement was observed among cell viability, membrane permeability and depolarisation activity in response to nisin and AITC. The results suggest that nisin and AITC as synergistic inhibitors could be an effective approach to achieve satisfactory antimicrobial activity against a wide range of foodborne pathogens.  相似文献   

9.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   

10.
The objective of this study was to model the fate of L. monocytogenes inoculated in beef at two concentrations (2.5 and 4.0 log CFU/g), packaged under aerobic, vacuum and three modified atmosphere combinations – 70%O2/20%CO2/10%N2, 50%O2/40%C O2/10%N2 and 30%O2/60%CO2/10%N2, and refrigerated at a normal temperature (4°C) and at a mild abuse temperature (9°C). An omnibus model based on the three-parameter Weibull equation proved statistically that L. monocytogenes survives better in vacuum (VP) than in aerobic conditions, although without significant difference in its ability to survive in the temperature range between 4°C and 9°C. Furthermore, regardless of the refrigeration temperature, the presence of CO2 in package atmosphere exerted a bactericidal effect on L. monocytogenes cells, being approximately 1.5 log of reduction when storage time reached 10 days. Since the pathogen can survive in VP/MAP beef at refrigerated storage, there is a need of maintaining its numbers below 100 CFU/g before packaging by placing efforts on the implementation of control measures during processing.  相似文献   

11.
Morcela de Arroz (MA) is a ready‐to‐eat blood and rice cooked sausage produced with pork, blood, rice, and seasonings, stuffed in natural casing and cooked above 90 °C/30 min. It is commercialized whole, not packed, with a restricted shelf life (1 wk/0 to 5 °C). The objective of this work was to establish sliced MA shelf life considering both the behavior of L. monocytogenes through a microbiological challenge test (MCT) and the consumer acceptability of MA stored: vacuum packed (VP), modified atmosphere packed (MAP: 80% CO2/20% N2), and aerobic packed (AP). The MCT was conducted inoculating ±3 log CFU/g of L. monocytogenes cell suspension on the MA slices. Packaged samples were stored at 3 ± 1 °C and 7 ± 1 °C until 20 d. At 3 ± 1 °C, L. monocytogenes behavior was not affected by packaging or storage time. At 7 ± 1 °C, the pathogen increased nearly 1 log CFU/g in the first 4 d. L. monocytogenes populations in AP were higher (P < 0.05) than in MAP. The pathogen may grow to hazardous levels in the 1st days if a temperature abuse occurs. Considering the acceptability by the consumers, the shelf life of MA stored at 3 ± 1 °C was 4.4 d for AP, 8.1 d for VP, and 10.4 d for MAP. The sensory shelf life established based on sensory spoilage is shorter than the shelf life to maintain the population of L. monocytogenes in safe levels.  相似文献   

12.
Y.M. Choi  Y.Y. Bae  K.H. Kim  B.C. Kim  M.S. Rhee   《Meat science》2009,82(4):419-424
This study was conducted to evaluate the effects of supercritical carbon dioxide (SC-CO2) treatment on soy sauce and hot-pepper paste marinades, as well as in marinated pork products, for the inhibition of generic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and E. coli O157:H7. SC-CO2 was more effective at destroying foodborne pathogens when it was applied to the marinades than the marinated products. SC-CO2 treatment at 14 MPa and 45 °C for 40 min resulted in a greater reduction in soy sauce (2.52–3.47 log CFU/cm2) than in hot-pepper paste marinade (2.12–2.72 log CFU/cm2). In the case of the marinated pork, when SC-CO2 was applied at 14 MPa and 45 °C for 40 min, the reduction levels of L. monocytogenes were 2.49 and 1.92 log CFU/cm2 in soy sauce and hot-pepper paste marinated pork, respectively. The results should be useful in the meat industry to help increase microbial safety and assure the microbial stability of marinades and marinated products.  相似文献   

13.
The objective of this study was to evaluate the relative effects and interactions of combined soaking treatment using citric acid (CTA) and apple polyphenol (APP) at mild heating temperatures for the inactivation of the external and internal microflora (mesophilic aerobic bacteria, mesophilic anaerobic bacteria, and fungi) in Chinese Tuber indicum, as well as to analyze the microbiological and sensory changes under modified atmosphere packaging (MAP)‐ and vacuum atmosphere packaging (VAC)‐packed Chinese T. indicum stored at 4 °C for up to 55 d. Chinese T. indicum was soaked with CTA and APP alone or in combination for 10, 20, and 30 min at 35, 45, and 55 °C. A disinfection method using CTA and APP (3% CTA + 3% APP for 20 min at 45 °C) was obtained. Under this set of combination, the experimental values of microbial counts of mesophilic aerobic bacteria, mesophilic anaerobic bacteria, and fungi were 2.31 ± 0.4 log CFU/g, <1.0 log CFU/g, and <1.0 log CFU/g, respectively. Through the analysis of sensory qualities and microbial populations for MAP‐ or VAC‐packed Chinese T. indicum, the shelf life of soaked truffles was prolonged to 45 or 40 d, respectively. The synergistic effect of CTA and APP may provide valuable insight into the reduction of microorganisms on fresh truffles.  相似文献   

14.
ABSTRACT: Effects of alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaClO), deionized water (DIW), 1% citric acid (CA) alone, and combinations of AlEW with 1% CA (AlEW + CA), in reducing the populations of spoilage bacteria and foodborne pathogens on cabbage were investigated at various dipping times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and 50 °C). Inhibitory effect of the selected optimal treatment against Listeria monocytogenes and Escherichia coli O157 : H7 on cabbage were also evaluated. Compared to the untreated control, AlEW treatment most effectively reduced the numbers of total bacteria, yeast, and mold, followed by AcEW and 100-ppm NaClO treatments. All treatments dip washed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on cabbage. With increasing dipping temperature from 1 to 50 °C, the reductions of total bacteria, yeast, and mold were significantly increased from 0.19 to 1.12 log CFU/g in the DIW wash treatment (P < 0.05). Combined 1% CA with AlEW treatment at 50 °C showed the reduction of around 3.98 and 3.45 log CFU/g on the total count, and yeast and mold, effective reduction of L. monocytogenes (3.99 log CFU/g), and E. coli O157 : H7 (4.19 log CFU/g) on cabbage. The results suggest that combining AlEW with CA could be a possible method to control foodborne pathogens and spoilage bacteria effectively on produce.  相似文献   

15.
Camembert-type cheese was produced from: raw bovine milk; raw milk inoculated with 2 or 4 log CFU/ml Listeria monocytogenes; raw milk inoculated with L. monocytogenes and subsequently pressure-treated at 500 MPa for 10 min at 20 °C; or uninoculated raw milk pressure-treated under these conditions. Cheeses produced from both pressure-treated milk and untreated milk had the typical composition, appearance and aroma of Camembert. Curd and cheese made from inoculated, untreated milk contained large numbers of L. monocytogenes throughout production. An initial inoculum of 1.95 log CFU/ml in milk increased to 4.52 log CFU/g in the curd and remained at a high level during ripening, with 3.85 log CFU/g in the final cheese. Pressure treatment inactivated L. monocytogenes in the raw milk at both inoculum levels and the pathogen was not detected in any of the final cheeses produced from pressure-treated milk. Therefore high pressure may be useful to inactivate L. monocytogenes in raw milk that is to be used for the production of soft, mould-ripened cheese.

Industrial relevance

This paper demonstrates the potential of high pressure (HP) for treatment of raw milk to be used in the manufacture of soft cheeses. HP treatment significantly reduced the level of Listeria monocytogenes in the raw milk and so allowed the production of safer non-thermally processed camembert-like soft cheese.  相似文献   

16.
An antimicrobial sachet containing microcellular foam starch (MFS) with embedded rosemary oil and thyme oil was developed to reduce bacterial growth in shredded mozzarella cheese. The efficacy of the volatiles of oils at various concentrations in reducing Listeria monocytogenes as well as the release of the oils from the MFS have been also determined in this study. The cheese, inoculated with a cocktail of 5 strains of L. monocytogenes (approximately 3 log CFU/g), was packaged in a Nylon/EVOH/PE bag. A paper sachet containing MFS embedded with rosemary oil and thyme oil, separately or together, was inserted into the bag. Rosemary and thyme oil volatiles released from the sachet restricted the growth of L. monocytogenes, resulting in a 2.5 log CFU/g reduction on day 9 at 10 °C. The volatile oils also showed inhibitory effects on the growth of lactic acid bacteria (LAB) and total aerobic bacteria (TAB). After 15 d at 10 °C, the numbers of LAB and TAB in the samples containing the sachet with both oils experienced a 1.2 and 1.4 log CFU/g reduction, respectively, compared to untreated samples. Nonetheless, the sachet treatment produced a distinct odor, unfavorably received by the panelists. The results suggest the potential for application of the sachet system for the reduction of growth of L. monocytogenes, LAB, and TAB in food products.  相似文献   

17.
Cells of Salmonella typhimurium suspended in 50 ml of 0.1% buffered peptone were subjected to five cycles of rapid or slow freezing and rapid or slow thawing. A five cycle rapid freeze-rapid thaw process was found to be an effective treatment resulting in 99% reduction in the numbers of S. typhimurium cells. Of the surviving cells after treatment, 75% was sublethally injured. The five cycle rapid freeze-rapid thaw process was investigated for its effectiveness in reducing numbers of S. typhimurium cells on experimentally inoculated chicken wings. The part of chicken wings consisting of ulna and radius with attached skin and muscle was inoculated with low (16–20 CFU/g) or high (ca 1,100 CFU/g) numbers of S. typhimurium and each wing was subjected to five cycles of the rapid freeze-rapid thaw process. There was over 90% reduction in the numbers of S. typhimurium cells on the chicken wings after the freeze-thaw treatment.  相似文献   

18.
Bactivory by protozoa is a major factor that limits the number of bacteria in nature and may control the presence of Listeria monocytogenes. The effectiveness of Tetrahymena pyriformis destruction of L. monocytogenes was measured. Within 1 hr, 35–40 T. pyriformis cells ingested an average of 1,219 CFU of L. monocytogenes. Gentamicin was then added to kill un-ingested Listeria. In 24 hr, the recoverable bacteria were reduced at an exponential rate to undetectable levels (<1 per culture). A genetically diverse set of L. monocytogenes cultures all reduced Listeria recovery by the same degree. In assays without addition of gentamicin, numbers of attached L. monocytogenes cells were lessened from an average of log 6.5 CFU/2 ml culture to log 4.7 CFU/2 ml culture. T. pyriformis was capable of lowering numbers of both free-swimming and attached L. monocytogenes. This technology may have applications to control L. monocytogenes in food processing environments.  相似文献   

19.
Sliced cooked turkey bologna with various additive formulations was surface-inoculated with Listeria monocytogenes (2.06–2.75 log CFU/g), vacuum packaged, and stored at 4°C. Sodium acetate was most inhibitory against growth of L. monocytogenes, followed by sodium lactate and potassium sorbate, while sodium bicarbonate allowed a maximum net growth of 6.78 log CFU/g, not significantly different (p>0.05) from the control (6.43 log CFU/g). Addition of 0.5% sodium acetate, 2.0% sodium lactate, or 0.26% potassium sorbate may significantly (p<0.05) decrease growth of L. monocytogenes in refrigerated turkey bologna surface-inoculated after thermal processing and slicing.  相似文献   

20.
Backseolgi is a Korean traditional rice cake, which is prepared by steaming the rice flour. After cook-chilling processing, backseolgi samples packaged by a modified atmosphere package (MAP), top sealing package (TSP), and linear low density-polyethylene package (LDPA; control) were evaluated in regard to microbial safety and sensory characteristics during storage. During storage at 30°C, the cell numbers of aerobic, psychrophilic, and anaerobic bacteria for the MAP sample increased to below 2 log CFU/g for 10 days, whereas the control and TSP samples increased more than 5.0 log CFU/g after 4 days. After 50 days of storage at 3°C, the cell numbers in the MAP sample were below 1.0 log CFU/g, whereas they were approximately 3.0 log CFU/g in the control and TSP samples. In the case of the sensory evaluation, the MAP sample score was above 5.0, whereas the scores of the CON and TSP samples were 1.0. As a result, MAP was identified as the most effective packaging method for increasing microbial safety while maintaining the sensory characteristics of the cook-chilled backseolgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号