首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction and characterization of stimuli-responsive supra-biomolecular nanoassembly between cucurbit[7]uril (CB7) and bovine serum albumin (BSA), uptake and release of doxorubicin (DOX) in live cells, the enhanced sensitivity of brilliant green (BG) and the metal ion-induced relocation of neutral red (NR) dye to BSA have been discussed in this review. The fluorescence intensity of DOX is largely quenched in the presence of nanoassembly which recovers with adamantylamine or by changing the pH of the solution, indicating the significant uptake and release of DOX. Whereas, the interaction of BG with CB7-BSA assembly leads to a huge fluorescence enhancement ∼350-fold through ternary complex formation. In another study, the supramolecular pKa tuning of nanoassembly encapsulated NR dye with metal ion and the consequent relocation of NR from CB7 cavity to the hydrophobic pocket of BSA have been demonstrated. All these studies show promising applications in drug delivery and on-off sensor.  相似文献   

2.
Novel self-healing supramolecular hydrogels have successfully been fabricated through reversible cucurbit[8]uril (CB[8])-enhanced π-π interaction. Naphthaline groups in the side chains of copolymers and CB[8] molecules are employed as cross-linkers to form 1:2 ternary complex by host-guest interaction. Furthermore, the dipole-dipole interaction between the polar carbonyl groups of CB[8] and quaternary ammonium cation also contributes to the formation of self-healing property. It is found that the molar ratio of CB[8] to naphthaline units has a great influence on its self-healing property. This work represents a facile approach for fabricating cucurbituril-based self-healing supramolecular hydrogels, which can be potentially applied in several fields.  相似文献   

3.
Cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) are two key members of the cucurbit[n]uril (CB[n]) family of macrocycles. Because of the good water solubility of CB[7] and the unique ternary binding properties of CB[8], these two macrocycles have attracted increasing attentions in recent years. In particular, many promising reports of exciting applications regarding CB[7] and CB[8] have emerged in the pharmaceutical sciences and complexations of biomolecules, which has become one of the most important areas of potential applications of CB[n]s. This review summarizes the applications of macrocyclic CB[7], CB[8] and their derivatives as supramolecular platforms that have been developed in recent years within the field of pharmaceutical sciences and biomolecular sciences, and discusses the current challenges and future prospects of this area.  相似文献   

4.
This work is concerned with the properties of cucurbit[n]uril (CBn) host portals. The carbonyl oxygens lining each of the cavity openings on these hosts give rise to a rim of negative charge density, which often has strong effects on guest binding processes. The negative effect that carboxylates exert on guest binding to cucurbit[7]uril (CB7) is described in detail, as well as the fact that the protonation state of terminal −COO/COOH groups can be utilized to control CB7 shuttling on suitably designed pseudorotaxanes. Carboxylates can also slow down the kinetics of CB7 complex formation and dissociation. Finally, the electrostatic properties of the portals are useful -with suitable molecular design- to develop strong cooperativity effects, resulting from attractive side-by-side interactions, on the assembly of multi-component supramolecular complexes.  相似文献   

5.
This review article focuses on supramolecular assemblies involving cucurbit[n]uril‐based containers and viologen guests as key building elements. Cucurbit[n]urils (CB[n], n = 5–8,10) are fascinating hosts forming a wide range of inclusion complexes (caviplexes) with 4,4′‐bipyridinium salts, known as viologens, either as discrete 1:1 inclusion compounds with CB[7] or as ternary inclusion compounds involving two hosts or two guests (2:1 with CB[7] and 1:2 or 1:1:1 with CB[8]). This property is currently being actively exploited to design and prepare self‐assembled dynamic stimuli‐responsive supramolecular polymers including gels, vesicles, films and organized arrays of polymeric microspheres or nanoparticles. This review highlights the main benefits of such polymers and gives an overview of the achievements and progress made in this field over the past decades. © 2018 Society of Chemical Industry  相似文献   

6.
Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.  相似文献   

7.
The supramolecular chemistry of cucurbituril, a synthetic receptor, is fascinating because of the remarkable guest binding behavior of the host. Studies in the field, however, have met with limitations, since the only species known was the hexameric macrocyclic compound, cucurbit[6]uril. Recently we synthesized its homologues, cucurbit[n]uril (n = 5, 7, 8), and derivatives. These new members of the cucurbituril family have expanded the scope further, and interest in them has grown enormously. This Account is a compilation of recent literature covering the syntheses of the homologues and derivatives, and their supramolecular chemistry.  相似文献   

8.
Cucurbituril homologues are multi-functional macrocycles that can find applications in many areas and have numerous interesting features setting them apart from the other macrocycles. Among them, the ability of one of the cucurbituril homologues, cucurbit[6]uril (CB6), to catalyze 1,3-dipolar cycloaddition in a regiospecific fashion is truly exceptional. Using this feature, small molecules can be clicked together to form complex structures in a very efficient way. Accordingly, in this article we review recent research involving the use of CB6-catalyzed 1,3-dipolar cycloaddition or the click reaction of CB6 in the construction of supramolecular assemblies including rotaxanes, pseudorotaxanes, polyrotaxanes, polypseudorotaxanes, molecular switches, machines, and nanovalves.  相似文献   

9.
The interaction between poly(methacrylic acid) (PMAA) and cucurbit[7]uril (CB[7]) in aqueous solution were investigated by dynamic light scattering (DLS), fluorescence techniques, UV-spectrophotometer, and resonance light scattering (RLS). The experimental results show that the aggregates were formed between CB[7] and H+ of PMAA by the hydrogen bonding interaction that increases with increasing the concentration of CB[7], which leads to the formation of the larger aggregates. Interestingly, PMAA has temperature sensitivity with the addition of CB[7] by UV-spectrophotometer and DLS. The pH of the solution of PMAA appears a inflection point with increasing the concentration of CB[7] comparing with the increase of the electrical conductivity all the time with the addition of CB[7]. In addition, in order to investigate the effect of cation on the size of the aggregates and avoid the effect of other anions at the same time, the dilute ammonia was added into the solution of PMAA. The experimental data show that the size of the aggregates increases with adding CB[7] because CB[7] could combine with both NH4+ by the electrostatic and iondipole interactions and H+ by the hydrogen bonding interaction, and a possible model is proposed to explain the host-guest interactions between PMAA and CB[7].  相似文献   

10.
This article begins by describing the synthesis and recognition properties of the cucurbit[n]uril homologues CB[5], CB[6], CB[7], CB[8], and CB[10]. Subsequently, we describe the state-of-the-art in understanding the mechanism of CB[n] formation. We describe the experiments that establish that glycoluril ( 1 H) undergoes condensation with formaldehyde by a combination of chain-growth and step-growth polymerization processes. Chain-growth processes deliver methylene bridged glycoluril oligomers 2 C – 8 C as intermediates that may undergo macrocyclization to nor-seco-CB[n] when the oligomer is long enough ( 5 C – 8 C) and subsequently form CB[n]. Step-growth processes allow oligomers to condense to give longer oligomers connected by a single CH2-bridge that undergo macrocyclization to deliver (±)-bis-nor-seco-CB[6] and bis-nor-seco-CB[10]. Lastly, we describe some of the exciting new recognition processes of the newly formed members of the CB[n] family. For example, bis-nor-seco-CB[10] undergoes homotropic allostery during ternary complex formation, (±)-bis-nor-seco-CB[6] exhibits moderately diastereoselective recognition processes (d.r. up to 88 : 12) with chiral ammonium ions in water, and nor-seco-CB[6] functions as an aldehyde reactive CB[n] synthon that can control the folding of alkanediammonium ions into a backfolded conformation in water.  相似文献   

11.
A new non-proteolytic method to harvest a cell-sheet was demonstrated using controllable host-guest interactions which can be dissociated by treating a strong guest on demand. Fibroblast cells (NIH3T3) were grown to confluence on a 1,6-diammoniumhexane conjugated hyaluronic acid (DAH-HA) polymer which was anchored to a cucurbit[7]uril (CB[7]) surface using the host-guest interaction between DAH and CB[7]. Treating with a strong guest allowed the cultured cells to be detached from the surface as a free standing sheet. This approach demonstrated the great potential of controllable host-guest chemistry as a novel tool for non-proteolytic harvesting of cell-sheets useful for regenerative therapy.  相似文献   

12.
Research on the chemistry of cucurbit[n]uril (CBn) hosts has picked up and maintained an impressive pace in the last decade, primarily due to the isolation of hosts with relatively larger cavity sizes, such as CB7 and CB8. This review article summarizes our involvement in this research effort, with particular emphasis on the binding of redox active guests by the CB7 and CB8 hosts. The binding of 4,4′-bipyridinium (viologen) derivatives was the starting point of our CB research. While methylviologen is encapsulated by CB7, forming a highly symmetric inclusion complex, more hydrophobic viologens are bound by inclusion of one of the terminal N-substituents inside the host cavity. Cationic ferrocene derivatives reach extremely high binding affinities with CB7. Binding by CB8 offers additional possibilities, since this host may accommodate two aromatic units inside its cavity, which can be utilized to exert redox control on the assembly of suitably dendronized guests. From a purely electrochemical standpoint, CB7-included viologens maintain their voltammetric reversibility, but CB7-included ferrocene residues experience a pronounced attenuation of their electron transfer kinetics. We have also applied these binding and electrochemical properties to the design and preparation of switchable, CB-based pseudorotaxanes.  相似文献   

13.
The encapsulation of biologically important compounds in the cavity of cucurbit[7]urils (CB7) brings about a variety of effects. The binding of lumichrome to CB7 promotes the tautomerization from alloxazine- to isoalloxazine-type structure in the ground-state, leading to substantial changes in the absorption and fluorescence properties. Even partial embedding in CB7 macrocycle is able to protect sanguinarine, a natural alkaloid, against nucleophilic addition and photooxidation. The inclusion of berberine in CB7 results in about 500-fold enhancement of its fluorescence intensity, and the change in its fluorescence decay characteristics indicates ternary complex formation with cations. DAPI (4′,6-diamidino-2-phenylindole dication) is an excellent fluorescent probe for the study of the CB7 complex formation with ionic liquids, surfactants, and biologically important compounds. The binding of 1-alkyl-3-methylimidazolium ions to CB7 is strongly exothermic; both the enthalpy and the entropy change in the reaction go through a minimum when the 1-alkyl group is lengthened, reaching the smallest values for the hexyl derivative.  相似文献   

14.
简要介绍了瓜环化合物的结构特征、性质及应用。详细综述了:①瓜环化合物的主客体配位作用及其超分子结构;②瓜环与碱金属和碱土金属的配位组装及超分子结构;③六元瓜环与过渡金属离子及镧系离子形成的超分子自组装结构。  相似文献   

15.
Identification of monosaccharide derivatives using an analytical technique is difficult due to their isomeric structures and similar physical properties. Although mass spectrometry (MS) has emerged as a prominent technique for this purpose, a comprehensive MS-based method for analyzing diverse monosaccharide species is yet to be developed. Herein, we employ host-guest chemistry using cucurbit[7]uril (CB[7]) with MS to identify four different monosaccharide derivative species. Tandem MS analysis distinguishes the monosaccharide derivatives based on the unique fragmentation pattern produced when forming gas-phase complexes with CB[7]. The ion mobility studies combined with computational calculations reveal that subtle differences in isomers cause distinct orientations inside CB[7] cavity, resulting in different fragmentation patterns of the isomers. This unique study demonstrates that host-guest chemistry combined with MS can be used for developing effective isomer analysis techniques.  相似文献   

16.
利用紫外光谱技术考察了一些离子对八元瓜环与1,10-菲罗啉及其衍生物作用的影响,结果显示:碱金属与碱土等金属离子及强酸根离子在一定的浓度范围内影响较小;H 和OH-影响较大,在pH=2~6时能生成包结比为1:2的包结物,在碱性条件下包结物分解;弱酸酸根离子对八元瓜环与菲罗啉及其衍生物的作用影响主要因为其水解产生的OH-的影响。可以通过调节溶液的酸度来控制瓜环对底物分子的包结作用。  相似文献   

17.
Eucalyptol, fenchyl alcohol, and geranylamine were tested for the binding to cucurbit[8]uril. Nanomolar affinities were found, giving rise to a highly selective binding of the terpenes by cucurbit[8]uril when compared to the smaller cucurbit[7]uril. This was rationalized with a better size fit with the larger macrocycle. These notions were supported by the calculation of the packing coefficient and NMR measurements of the free and complexed terpenes. The binding process is mainly enthalpically driven, which is associated with the release of high-energy water.  相似文献   

18.
Asymmetric organocatalytic synthesis is a powerful tool in organic chemistry to achieve desired stereoisomers in high purity via mild catalytic routes. The immobilization of homogeneous catalytic species onto heterogeneous phases embodies the evolution of asymmetric catalysis, since it allows the recycling of the catalyst for several runs until degradation. Previously reported non-covalent immobilization of proline-based catalysts for aldol reaction onto magnetic nanoparticles functionalized with β-cyclodextrin (MNP-β-CB) demonstrated the viability of the methodology. This paper proposes two new catalyst recycling strategies based on Cucurbit[7]uril (CB[7]) for the aldol reaction and the Robinson annulation. These recycling methodologies are conceptually different. The former relies on the homogeneous encapsulation of the catalyst in cucurbituril, CB[7] ⋅ Cat, and its recycling in the aqueous phase by extraction of the aldol product with organic solvents. The latter relies on the heterogeneous encapsulation of the catalyst as MNP-CB[7] ⋅ Cat2 system and its recycling by magnetic harvesting. Density functional theory (DFT) calculations have been employed to rationalize the thermodynamics of experimental results, and to suggest caveats and plausible improvements in view of a future catalytic design.  相似文献   

19.
Host-guest inclusion complexes of hymexazol with three different cucurbit[n]uril, cucurbit[7]uril (Q[7]), hemimethyl-substituted cucurbit[6]uril (HHMeQ[6]), and twisted cucurbit[14]uril (tQ[14]) have been investigated by means of 1H NMR spectroscopy, quadrupole-time of flight mass spectrometry (Q-TOF), and isothermal titration calorimetry (ITC). 1H NMR experimental results revealed that hymexazol resides within the respective cavities of the selected Q[n], and mass spectrometric experimental results revealed that it interacts with these three Q[n] through the formation of 1 : 1 inclusion complexes. ITC experimental results indicated moderate binding constants. In vitro assays showed that the complexation of hymexazol by the Q[n] increased its inhibitory effect on the mycelia growth of Botrytis cinerea Pers.  相似文献   

20.
This review describes monovalent synthetic receptor–ligand (or host–guest) pairs with extremely high binding affinity, comparable to that of the biotin–avidin pair, and their applications. Cucurbit[7]uril (CB[7]), a member of the host family cucurbit[n]uril (CB[n], n=5–8, 10), forms ultrastable host–guest complexes with ferrocene-, adamantane- or bicyclo[2.2.2]octane-based molecules having ammonium groups properly positioned to interact with the carbonyl oxygens at the portals of CB[7]. The extremely high affinity is achieved by a large enthalpic gain arising from the near perfect size/shape complementarity between the rigid CB cavity and the rigid core of the guest molecules, with the critical assistance of the positive entropy change due to the extensive dehydration of the host and guest. The high stability of the complexes allowed us and others to explore several biological applications such as immobilization of biomolecules on a solid surface, protein isolation, triggering intracellular events, and regulating enzymatic activities. These complexes with their exceptional affinity, chemical robustness, simple preparation, biocompatibility, and easy handling may replace the biotin–(strept)avidin system in diverse areas of research, including affinity chromatography, high throughput biochemical assays, imaging, and sensor technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号