首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Amphiphilic Diblock Copolymers by DPE Method   总被引:1,自引:0,他引:1  
Amphiphilic diblock copolymers, poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) and polystyrene-b-poly(acrylic acid) (PS-b-PAA), were prepared by 1,1-diphenylethene (DPE) method under mild conditions. Firstly, free radical polymerization of tert-butyl acrylate (tBA) was carried out with AIBN as initiator in the presence of DPE, giving a DPE-containing precursor, PtBA, with controlled molecular weight. Secondly, methyl methacrylate and styrene were polymerized in the presence of PtBA precursor, and PS-b-PtBA and PMMA-b-PtBA diblock copolymers with controlled molecular weights were obtained respectively. Finally, amphiphilic diblock copolymers, PMMA-b-PAA and PS-b-PAA, were prepared by hydrolysis of PS-b-PtBA and PMMA-b-PtBA. The formation of PS-b-PAA and PMMA-b-PAA was confirmed by 1H NMR. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to detect the self-assembly behavior of the amphiphilic diblock polymers in tetrahydrofuran (THF).  相似文献   

2.
BACKGROUND: The self‐assembly of amphiphilic copolymers has been demonstrated to be a powerful route towards supramolecular objects with novel architectures, functions and physical properties. In this study, the synthesis and morphology of amphiphilic linear polystyrene (PS)‐block‐poly(2‐vinylpyridine) (P2VP) and heteroarm star PS‐star‐P2VP copolymers are studied. The dispersion of silver nanoparticles with the prepared PS‐block‐P2VP and PS‐star‐P2VP copolymers is also discussed. RESULTS: Amphiphilic copolymers with different P2VP chain lengths were successfully synthesized using atom transfer radical polymerization (ATRP). The copolymers prepared had low polydispersity indices. Various aggregate morphologies, including spheres, vesicles, rods, large compound micelles, two‐dimensional ring‐like and three‐dimensional hollow structures, were formed by varying the hydrophilic coil length and the selective solvent content. Silver nanoparticles showed good dispersion behavior in both types of copolymers. CONCLUSION: Based on this study, it will be possible to prepare metal/copolymer nanocomposites by direct mixing. Further, the PS‐block‐P2VP and PS‐star‐P2VP copolymers prepared can be used in the preparation of nanoporous films as templates and nanoparticles as nanoreactors. They can also be applied in terms of oil recovery, paints and cosmetics formulations, as well as in pharmaceutical and medical applications as rheological agents. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Previously, star polystyrenes (PSs) have been prepared by atom transfer radical polymerization (ATRP) of N‐[2‐(2‐bromoisobutyryloxy)ethyl]maleimide (BiBEMI) with a large excess of styrene (St) in one pot. But linear PSs were also present during the formation of the star polymers. In the work reported here, we found that control of the formation of star polymers using a one‐pot approach can be improved by using a two‐step process. The polymerization was conducted first at a low temperature to form multifunctional cores by copolymerization of BiBEMI and St. Second, on increasing the temperature, homopolymerization of St occurred to grow PS arms. Then a series of amphiphilic star polystyrene‐block‐poly(acrylic acid)s, (S14Ax)16, were prepared by ATRP of tert‐butyl acrylate with the star PSs as macroinitiators, followed by selective acidolysis of the poly(tert‐butyl acrylate) blocks. Their micellization was studied using dynamic light scattering, which suggested that (S14A112)16 amphiphilic star block copolymers could form unimolecular micelles in a basic aqueous solution. Then pyrene molecules were encapsulated using the (S14A112)16 amphiphilic star copolymers and the loading capacity was investigated with UV and fluorescence spectroscopy. © 2013 Society of Chemical Industry  相似文献   

4.
In the first part of this article, the method for preparation of heteroarm star (A n B n star-block) copolymers from diblock macromonomers possessing central functional groups is reviewed. These diblock macromonomers formed a microphase-separated structure in the solid state. The central functional groups at the position of the block junction were located regularly at the domain interface. The microgelation of diblock copolymer films formed A n B n star-block copolymers by organization effects. The second section reviews the methods for preparation of (AB) n star-block copolymers from diblock macromonomers possessing a terminal vinylbenzyl group. The microgelation in micelles between diblock macromonomers and linking agent also formed (AB) n star-block copolymers. Finally, the phase stability criteria of these star-block copolymers are reported briefly.  相似文献   

5.
pH‐Responsive amphiphilic branched copolymers were prepared from poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2‐(diethylamino)ethyl methacrylate (DEAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA), and ethylene glycol dimethacrylate (EGDMA) utilizing a thiol‐modified free radical polymerization. The molecular structures of copolymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR) and triple‐detection gel permeation chromatography (tri‐GPC). The aqueous solution behaviors of the obtained copolymers were investigated by dynamic light scattering (DLS). The DLS data showed that about 16 nm polymer particles comprising of hydrophobic poly(tert‐butylamino)ethyl methacrylate (PtBAEMA) and poly(diethylaminoethyl methacrylate (PDEAEMA) core, hydrophilic PEGMA corona were formed above pH 8. With the decrease of pH from 8 to 6, a dramatic increase in the hydrodynamic radius of polymer particles from 16 nm to 130 nm was observed resulting from the protonation of the PDEAEMA segment. Moreover, in vitro drug release behaviors of the resulting polymer assemblies at different pH values were also investigated to evaluate their potential as sustained release drug carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42183.  相似文献   

6.
Well‐defined asymmetric amphiphilic ABA′ block copolymers composed of poly(ethylene oxide) monomethylene ether (MPEO) with different molecular weights as A or A′ block and poly(styrene) (PS) as B block were synthesized by the combination of atom transfer radical polymerization (ATRP) and click reactions. First, bromine‐terminated diblock copolymer poly(ethylene oxide) monomethylene ether‐block‐poly(styrene) (MPEO‐PS‐Br) was prepared by ATRP of styrene initiated with macroinitiator MPEO‐Br, which was prepared from the esterification of MPEO and 2‐bromoisobutyryl bromide. Then, the azido‐terminated diblock copolymers MPEO‐PS‐N3 were prepared through the bromine substitution reaction with sodium azide. Propargyl‐terminated MPEO with a different molecular weight was prepared under the basic condition from propargyl alcohol and p‐toluenesulfonyl‐terminated MPEO, which was prepared through the esterification of MPEO and p‐toluenesulfochloride using pyridine as solvent. Asymmetric amphiphilic ABA′ block copolymers, with a wide range of number–average molecular weights from 1.92 × 104 to 2.47 × 104 and a narrow polydispersity from 1.03 to 1.05, were synthesized via a click reaction of the azido‐terminated diblock copolymers and the propargyl‐terminated MPEO in the presence of CuBr and 1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) catalyst system. The structures of these ABA′ block copolymers and corresponding precursors were characterized by NMR, IR, and GPC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
This article describes a facile approach for the synthesis of water-soluble ABC triblock copolymers through a combination of atom transfer radical polymerization (ATRP) and click reactions. The bromine-terminated MPEO–PtBA–Br precursor was first prepared by ATRP, and converted into the azido-terminated precursor MPEO–PtBA–N3 by a simple nucleophilic substitution. Then, MPEO–PtBA–PzLLys triblock copolymers were synthesized via the click reaction of MPEO–PtBA–N3 and the propargyl-terminated poly(Nε-carbobenzoxy-l-lysine)s (PzLLys). The water-soluble MPEO–PAA–PLLys ABC triblock copolymers were obtained from the hydrolysis process. The structures of these block copolymers were characterized by NMR, IR and GPC.  相似文献   

8.
Poly(tert‐butyl acrylate) (PtBA) is a versatile hydrophobic macromolecule usually preferred in the development of new materials for a host of applications. PtBA homopolymers with well‐defined structure and controlled molecular weight in a wide range were successfully synthesized via radiation‐induced reversible addition–fragmentation chain transfer (RAFT) polymerization in the presence of a trithiocarbonate type RAFT agent. The polymerization of tBA was performed under 60Co γ‐irradiation in the presence of 2‐(dodecylthiocarbonothioylthio)‐2‐methylpropionic acid (DDMAT) as the RAFT agent in toluene at room temperature with three [tBA]/[DDMAT] ratios (400, 600 and 1000) and different irradiation times. Radiation‐induced polymerization of tBA displayed controlled free radical polymerization characteristics: a narrow molecular weight distribution (Mw/Mn ~ 1.1), pseudo first order kinetics and controlled molecular weights. The system followed the RAFT polymerization mechanism even at very low amounts of RAFT agent ([tBA]/[DDMAT] = 1000), and molecular weights up to 113 900 with narrow dispersity (Ð =1.06) were obtained. PtBA was further hydrolysed into different amphiphilic PtBA‐co‐poly(acrylic acid) (PAA) copolymers by low (27.5%) and high (77.3%) degrees of hydrolysis. The pH sensitivity of the two copolymers was investigated by dynamic light scattering at pH 2 and pH 9 (above and below the pKa value of PAA) and their hydrodynamic diameters and zeta potential values were determined. © 2020 Society of Chemical Industry  相似文献   

9.
Polychloromethylstyrene (PCMS)‐block‐polystyrene (PS) copolymers were prepared by controlled free‐radical polymerization in the presence of 2,2,6,6‐tetramethylpiperidinooxy and 2,2′‐azobisisobutyronitrile (AIBN) initiator. The PCMS‐b‐PS copolymers had narrow molecular weight distributions, and the block lengths were controlled by the reaction time and the molar ratios of chloromethylstyrene/AIBN and styrene/PCMS macroinitiator. The block copolymers were further quaternized with triethylamine. The amphiphilic cationic block copolymers formed colloidal particles; the effects of the pH value, salt concentration, and solvent polarity on the particle size were investigated with a dynamic light scattering analyzer. The average colloid size increased with increasing pH value and salt concentration. This implied that the colloid formed a protonated hydrophilic shell and hydrophobic styrene core in water. Furthermore, with the addition of tetrahydrofuran to the aqueous solution, the styrene segments in the core could be inverted to the outside of the colloid. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Liwei Zhang 《Polymer》2006,47(15):5259-5266
Reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene using bisallyl trithiocarbonate as a chain transfer agent (CTA) was studied. The polymerization exhibited first-order kinetics and the molecular weight increased linearly with increase of monomer conversion. Well defined allyl-functionalized telechelic polystyrene (PS), poly(tert-butyl acrylate) (PtBA) and corresponding triblock copolymers, polystyrene-b-poly(n-butyl acrylate)-b-polystyrene (PS-b-PnBA-b-PS) and poly(tert-butyl acrylate)-b-polystyrene-b-poly(tert-butyl acrylate) (PtBA-b-PS-b-PtBA) were prepared as characterized with GPC and NMR analysis. The allyl-end groups of the telechelic PS have been switched to 1,2-dibromopropyl groups quantitatively by bromine addition reaction, further substitution of the bromide with azide was also made. Furthermore, star PS with allyl-end-functionalized arms was synthesized by RAFT polymerization of divinyl benzene using allyl-functionalized PS as a macro-CTA via arm-first approach. Star polymer with a thiol-functionalized core was generated by aminolysis reaction of the star polymer and ethylenediamine. As a result, difunctionalized star polymer with allyl and thiol groups was obtained and was used as a stabilizer for the formation of gold nanoparticles.  相似文献   

11.
Biodegradable star-shaped poly(?-caprolactone) (PCL) with four arms were synthesized by ring-opening polymerization (ROP) from a symmetric pentaerythritol core via the ‘‘core-first’’ strategy. Subsequently, two samples of the amphiphilic A4B8 star-block copolymers with symmetrical topologies [4s(PCL-b-2sPEG)] were synthesized by a macromolecular coupling reaction between carboxyl-terminated poly(ethylene glycol) (PEG) and 4-arm star-shaped PCL macromers with eight -OH end groups. The latter was prepared by attaching 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid (HHMPA) to 4sPCL using a simple two-step reaction sequence. The in vitro cytotoxicity test indicated no apparent cytotoxicity. The amphiphilic star-block copolymers are capable of self-assembling into spherical micelles in water at room temperature, and they possess low critical micelle concentrations (CMCs) of 2∼8 mg/L in aqueous solution which was determined by fluorescence spectroscopy using pyrene as a probe. Transmission electron microscopy (TEM) measurement demonstrated that the micelles exhibit a spherical shape with a size range of 30∼50 nm in diameter. In addition, the hydrophobic and anticancer drug, quercetin, is loaded effectively in the polymeric micelles, suggesting that these new materials are appropriate candidates as hydrophobic drug nanocarriers.  相似文献   

12.
A series of amphiphilic graft copolymers PEO-g-PCL with different poly (ε-caprolactone) (PCL) molecular weight were successfully synthesized by a combination of anionic ring-opening polymerization (AROP) and coordination-insertion ring-opening polymerization. The linear PEO was produced by AROP of ethylene oxide (EO) and ethoxyethyl glycidyl ether initiated by 2-(2-methoxyethoxy) ethoxide potassium, and the hydroxyl groups on the backbone were deprotected after hydrolysis. The ring-opening polymerization of CL was initiated using the linear poly (ethylene oxide) (PEO) with hydroxyl group on repeated monomer as macroinitiator and Sn(Oct)2 as catalyst, then amphiphilic graft copolymers PEO-g-PCL were obtained. By changing the ratio of monomer and macroinitiator, a series of PEO-g-PCL with well-defined structure, molecular weight control, and narrow molecular weight distribution were prepared. The expected intermediates and final products were confirmed by 1H NMR and GPC analyzes. In addition, these amphiphilic graft copolymers could form spherical aggregates in aqueous solution by self-assemble, which were characterized by transmission electron microscopy, and the critical micelle concentration values of graft copolymers PEO-g-PCL were also examined in this article.  相似文献   

13.
With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene PS‐b‐P(PEGA), and an analogous terpolymer including also sodium methacrylate (MANa) in the poly(PEGA) (PPEGA) block, PS‐b‐P(PEGA‐co‐MANa) have been prepared and characterized. Viscosity and surface activity of solutions of the prepared polymers in pure and salty water have been measured and the results have been interpreted in terms of the chemical structures of the systems. A clear influence of the presence of the charged MANa moieties has been observed in both rheological and interfacial properties. The PS‐b‐P(PEGA‐co‐MANa) terpolymer, being an effective surface active viscosifying agent, is a good candidate as polymeric surfactant for applications in enhanced oil recovery and related. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44100.  相似文献   

14.
Hyperbranched polystyrenes (PS) were prepared by living radical photopolymerization of N,N‐diethyldithiocarbamoylmethylstyrene (DTCS) as an inimer under UV irradiation. Branched PS with an average chain length between branching points of four styrene units was also prepared by living radical copolymerization of DTCS with styrene. The ratio of radius of gyration to hydrodynamic radius RG/RH for these hyperbranched polymers was in the range 0.82–0.89 in toluene. The translational diffusion coefficient D(C) showed a constant value in the range of 0–14 × 10?3 g ml?1 in toluene. It was found from these dilute solution properties that hyperbranched PSs formed a unimolecular structure even in a good solvent because of their compact nature. These hyperbranched PSs exhibited large amounts of photofunctional carbamate (DC) groups on their outside surfaces. Subsequently, we derived amphiphilic star‐hyperbranched copolymers by grafting from hyperbranched macroinitiator with 1‐vinyl‐2‐pyrrolidinone. These star‐hyperbranched copolymers were soluble in water and methanol. © 2001 Society of Chemical Industry  相似文献   

15.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

16.
Poly(ethylene oxide) (PEO) monochloro macroinitiators or PEO telechelic macroinitiators (Cl‐PEO‐Cl) were prepared from monohydroxyfunctional or dihydroxyfunctional PEO and 2‐chloro propionyl chloride. These macroinitiators were applied to the atom transfer radical polymerization of styrene (S). The polymerization was carried out in bulk at 140°C and catalyzed by Copper(I) chloride (CuCl) in the presence of 2,2′‐bipyridine (bipy) ligand (CuCl/bipy). The amphiphilic copolymers were either A‐B diblock or A‐B‐A triblock type, where A block is polystyrene (PS) and B block is PEO. The living nature of the polymerizations leads to block copolymers with narrow molecular weight distribution (1.072 < Mw/Mn < 1.392) for most of the macroinitiators synthesized. The macroinitiator itself and the corresponding block copolymers were characterized by FTIR, 1H NMR, and SEC analysis. By adjusting the content of the PEO blocks it was possible to prepare water‐soluble/dispersible block copolymers. The obtained block copolymers were used to control paper surface characteristics by surface treatment with small amount of chemicals. The printability of the treated paper was evaluated with polarity factors, liquid absorption measurements, and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. From our study, it is observed that the chain length of the hydrophilic block and the amount of hydrophobic block play an important role in modification of the paper surface. Among all of block copolymers synthesized, the PS‐b‐PEO‐b‐PS containing 10 wt % PS was found to retard water absorption considerably. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4304–4313, 2006  相似文献   

17.
Ning Kang  Jean-Christophe Leroux   《Polymer》2004,45(26):8967-8980
Novel A-B-A triblock and star-block amphiphilic copolymers, i.e. poly(N-(2-hydroxypropyl)methacrylamide)-block-poly(D,L-lactide)-block-poly(N-(2-hydroxypropyl)metha-crylamide), poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide)-block-poly(N-vinyl-2-pyrrolidone), star-poly(D,L-lactide)-block-poly(N-(2-hydroxypropyl)methacrylamide) and star-poly(D,L-lactide)-block-poly(N-vinylpyrrolidone), were synthesized and characterized. These polymers were prepared by free radical polymerization of N-(2-hydroxypropyl)methacrylamide and N-vinyl-2-pyrrolidone in the presence of either poly(D,L-lactide) dithiol or star-poly(D,L-lactide) tetrakis-thiol, both biodegradable macromolecular chain-transferring agents. All copolymers self-assembled in aqueous solution to form supramolecular aggregates of 20–180 nm in size. The critical aggregation concentration of the copolymers ranged from 5 to 24 mg/L, depending on their hydrophobicity. The partition equilibrium constant of pyrene in the hydrophobic core of micelles was between 0.71×105 and 1.63×105. The triblock copolymer micelles were loaded with two model poorly water-soluble drugs, namely, indomethacin (1.5–16.4% w/w) and paclitaxel (0.4–1.5% w/w), by a dialysis procedure. These triblock and star-block copolymers could prove useful as nanocarriers for the solubilization and delivery of hydrophobic drugs.  相似文献   

18.
Hyperbranched polystyrenes (PS) were prepared by living radical photopolymerization of 4‐vinylbenzyl N,N‐diethyldithiocarbamate as an inimer under UV irradiation. The star‐hyperbranched copolymers were derived by grafting from surface N,N‐diethyldithiocarbamate groups of hyperbranched macroinitiator with t‐butyl methacrylate in the presence of N,N‐tetraethylthiuram disulfide. We obtained poly(methacrylic acid) star‐hyperbranched PS nanospheres by hydrolysis of poly(t‐butyl methacrylate)‐grafted chains. We established two‐dimensional (2D) regular nanopatterning by aligning continuously such nanospheres on poly(2‐vinylpyridine) (P2VP) lamellar layers of PS‐block‐P2VP diblock copolymer film. Electrostatic interaction between nanosphere surface having negative charges (? COOCs) and P2VP lamellar layer acted effectively for the 2D nanopattern formation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4206–4210, 2006  相似文献   

19.
Poly(styrene)‐poly(lactide) (PS‐PLA), poly (tert‐butyl styrene)‐poly(lactide) (PtBuS‐PLA) diblocks, and poly(tert‐butyl styrene)‐poly(styrene)‐poly(lactide) (PtBuS‐PS‐PLA) segmented and tapered triblocks of controlled segment lengths were synthesized using nitroxide‐mediated controlled radical polymerization. Well‐defined PLA‐functionalized macromediators derived from hydroxyl terminated TEMPO (PLAT) of various molecular weights mediated polymerizations of the styrenic monomers in bulk and in dimethylformamide (DMF) solution at 120–130°C. PS‐PLA and PtBuS‐PLA diblocks were characterized by narrow molecular weight distributions (polydispersity index (Mw/Mn) < 1.3) when using the PLAT mediator with the lowest number average molecular weight Mn= 6.1 kg/mol while broader molecular weight distributions were exhibited (Mw/Mn = 1.47‐1.65) when using higher molecular weight mediators (Mn = 7.4 kg/mol and 11.3 kg/mol). Segmented PtBuS‐PS‐PLA triblocks were initiated cleanly from PtBuS‐PLA diblocks although polymerizations were very rapid with PS segments ~ 5–10 kg/mol added within 3–10 min of polymerization at 130°C in 50 wt % DMF solution. Tapering from the PtBuS to the PS segment in semibatch mode at a lower temperature of 120°C and in 50 wt % DMF solution was effective in incorporating a short random segment of PtBuS‐ran‐PS while maintaining a relatively narrow monomodal molecular weight distribution (Mw/Mn ≈ 1.5). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

20.
Weidong Zhang 《Polymer》2008,49(21):4569-4575
The novel trifunctional reversible addition-fragmentation chain transfer (RAFT) agent, tris(1-phenylethyl) 1,3,5-triazine-2,4,6-triyl trithiocarbonate (TTA), was synthesized and used to prepare the three-armed polystyrene (PS3) via RAFT polymerization of styrene (St) in bulk with thermal initiation. The polymerization kinetic plot was first order and the molecular weights of polymers increased with the monomer conversions with narrow molecular weight distributions (Mw/Mn ≤ 1.23). The number of arms of the star PS was analyzed by gel permeation chromatography (GPC), ultraviolet visible (UV-vis) and fluorescence spectra. Furthermore, poly(styrene-b-N-isopropylacrylamide)3 (PS-b-PNIPAAM)3, the three-armed amphiphilic thermosensitive block copolymer, with controlled molecular weight and well-defined structure was also successfully prepared via RAFT chain extension method using the three-armed PS obtained as the macro-RAFT agent and N-isopropylacrylamide as the second monomer. The copolymers obtained were characterized by GPC and 1H nuclear magnetic resonance (NMR) spectra. The self-assembly behaviors of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)3 in mixed solution (DMF/CH3OH) were also investigated by high performance particle sizer (HPPS) and transmission electron microscopy (TEM). Interestingly, the lower critical solution temperature (LCST) of aqueous solutions of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)3 decreased with the increase of relative length of PS in the block copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号