首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quality attributes of waxy durum wheat (Triticum turgidum L), milled semolina and cooked spaghetti were examined and compared with those of two non‐waxy durum cultivars. With the exception of kernel hardness, wheat quality characteristics were similar for both waxy and non‐waxy durum. Compared with average values obtained for durum wheat grown in North Dakota (USA) during the crop year 2000, the values obtained for the wheat used in this study were equal or better for most parameters evaluated. Semolina extraction for all samples was lower than the 2000 average of 62.6%. The waxy lines had higher ash, lower speck count, similar protein quantity, lower wet gluten and stronger mixograph curves than the non‐waxy cultivars. Waxy durum semolina had higher lipid content, starch damage, stirring number and flour swelling values. Spaghetti made from waxy durum semolina had shorter cooking time, similar cooking loss and cooked weight and lower firmness values, which would be unacceptable by most standards. Spaghetti made from blends containing 20–80% waxy durum semolina were evaluated. Cooking time and firmness decreased and cooking loss increased as the amount of waxy semolina increased. Acceptable spaghetti was obtained using 20–40% waxy semolina blends, depending on the quality of the non‐waxy blending material. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
The objective of this research was to study the effect of partially substituting semolina flour by native (NCHF) and modified chayotextle (CHFMD) flours, on the physicochemical properties and cooking quality of spaghetti. Spaghetti was obtained by replacing semolina flour (control) with five different concentrations of NCHF and CHFMD flours (10%, 17.5%, 25%, 32.5% and 40%). The proximal composition of the flours showed that both NCHF and CHFMD flours lower content of protein and fat but higher content of ash and resistant starch (RS). Moreover, the RS content increased due to thermal modification (TM) and that RS remained high, even after the cooking process. Pasting properties such as peak viscosity, breakdown, setback and final viscosity were influenced by NCHF and CHFMD concentrations. Brightness (ΔL*) was significantly reduced by inclusion of increasing CHFMD levels. True density and water absorption values increased with addition of NCHF and CHFMD, compared to the control spaghetti. The results obtained in this study demonstrated the possibility for producing spaghetti containing up to 40% CHFMD flour, with acceptable quality and functional properties.  相似文献   

3.
Spaghetti were produced in a pilot plant from semolina and semolina blended with increasing amounts of barley flour. According to size exclusion high-performance liquid chromatography (SE-HPLC), barley proteins interact with semolina proteins during pasta making, forming polymers of high molecular weight. Of these, the unextractable polymeric proteins (UPP) were at significantly higher concentrations than in spaghetti made from semolina. The decrease of both S–S bonds and –SH free groups in barley semolina spaghetti, with respect to that made of semolina, suggested that polymerisation among the different classes of proteins involves a new bonding arrangement. Due to β-glucan hydrophilicity and competition with starch for water, the replacement of increasing amounts of semolina with barley flour was able to increase the optimal cooking time. The sensory properties of composite spaghetti were judged as better than the control because of the higher firmness and the lower bulkiness and stickiness of the former.  相似文献   

4.
The objective of this research was to study the effect of the addition of common bean flour to semolina on the cooking quality and total phenolic content of pasta. Pasta was obtained at three temperatures (60, 70 and 80 °C) and two levels of added common bean flour (15% and 30%); plain pasta (100% semolina) was used as control. Moisture, optimal cooking time, cooking loss, water absorption capacity, colour change, firmness and total phenolic and furosine contents were measured. The cooking time and water absorption were diminished in spaghetti pasta with added common bean flour; cooking loss increased and firmness decreased as a function of the bean flour percentage. A linear relationship between colour change and common bean flour content in pasta was found. Increases of furosine and phenolic contents in pasta with the addition of bean flour were observed.  相似文献   

5.
6.
Spaghetti was prepared by replacing semolina with different amounts of lupin protein, in order to increase the protein content. A detailed investigation of the rheological properties of the dough and the cooking quality of pasta was performed in comparison to standard semolina spaghetti. Moreover, the effect of the addition of lupin protein on non-enzymatic browning was evaluated by measuring ε-furoylmethyllysine (furosine) and 5-hydroxymethyl-2-furancarboxaldehyde (HMF), which are considered useful indices of semolina quality and pasta processing conditions. Dried spaghetti fortified with 5% of lupin protein isolate has a colour and rheological features comparable with the semolina sample and also the behaviour during cooking results to be satisfactory. As far as the thermal damage is concerned, the furosine values of fortified spaghetti differ only marginally from standard pasta and the percentage lysine loss is quite small (ranging from 12.1% to 15.7%).  相似文献   

7.
A. Baiano  C. Lamacchia  C. Fares  E. La Notte 《LWT》2011,44(4):1226-1232
The effects of the replacement of increasing amounts of semolina with toasted or partially defatted soy flour on dough rheological indices and spaghetti quality were evaluated. The replacement caused the dough weakening and the increase of the tenacity-extensibility ratio. Due to the competition of soy proteins and starch for water, the substitution of increasing amounts of semolina was able to increase the optimal cooking time without significant changes of the ratio between the increase in weight or diameter and the weight or diameter of dry spaghetti (ΔP/P and ΔD/D) but with a significant slowing of the ΔL/L (ratio between the increase in length and the length of dry spaghetti) increase during overcooking. Around the optimal cooking time, the release of organic matter was higher in pasta made exclusively of semolina whereas the sensory response was similar for control and composite spaghetti. Statistically significant correlations were obtained between protein content of the flour mixtures or dough alveographic indices and the cooking behaviour of semolina-soy spaghetti according to non-linear regression models. In particular, both protein content and alveographic indices allowed to predict approximately 92-94% of the variation of cooking losses and, in a lower measure, the variation of bulkiness and elasticity of semolina-soy spaghetti.  相似文献   

8.
The potential of common buckwheat flour (Supreme) and bran (Farinetta) in improving upon the phenolic and antioxidant properties of durum spaghetti was investigated. The cooking quality and carbohydrate digestibility of products were also studied. Significantly large increments of between 114 and 522% for total phenolic content (TPC), 50 and 242% for total flavonoids content (TFC), and over 359% for 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity were recorded for uncooked experimental spaghetti samples over the control. Farinetta contributed more phenolic and antioxidant compounds than Supreme flour. Processing and cooking resulted in decreases in phenolic content and antioxidant activity. Cooking losses of up to 8.8% were recorded for the experimental samples and were higher in Farinetta-substituted products. These were generally higher than that of the control (6.3%). The introduction of buckwheat increased carbohydrate digestibility of products, but at the same time, resulted in an overall lower amount of reducing sugars after 120 min of in vitro hydrolysis. Results show that the phenolic and antioxidant properties of durum spaghetti fortified with buckwheat milling fractions can compare favourably with those of 100% whole buckwheat soba pasta, and at the same time, maintain a higher cooking quality due to the presence of semolina.  相似文献   

9.
An experiment was conducted to determine the effect of different pasta:water ratios and nontraditional ingredients on the cooking properties of spaghetti. Spaghetti was made using semolina and semolina containing 20% (w/w) nontraditional (NT) ingredients (corn, flaxseed, lentil, oat, pinto bean and soybean flours). Pasta:water ratios evaluated were 13 g:400 mL, 27 g:400 mL and 48 g:400 mL. Addition of pasta caused a decline in cooking water temperature. The water temperature drop and recovery time to boiling (100 °C) varied with pasta:water ratio and with nontraditional ingredient in the spaghetti. These results were attributed to the calculated specific heat capacity of the ingredients incorporated in the spaghetti. Cooking time was reduced for all NT spaghetti with respect to the control sample and was longest when 48 g of pasta was cooked. Pasta:water ratio affected cooking loss but not cooked weight or cooked firmness. Cooking losses were greater with 13 g:400 mL compared to 48 g:400 mL.  相似文献   

10.
Spaghetti produced in a pilot plant were made from semolina and semolina blended with 10%, 15%, 25% or 50% of defatted soy flour (DSF) or toasted soy flour (TSF).Proteins of spaghetti were characterized by size exclusion-high-performance liquid chromatography (SE-HPLC). Results showed that soy globulins interact with semolina proteins during pasta making, forming polymers of high molecular weight. Of these, the sodium dodecyl sulphate-unextractable components were significantly higher (p < 0.001) (up to 49% unextractable polymeric proteins) (UPP) than that of spaghetti made of semolina (24.6% UPP). The decrease of S–S bonds and the increase of –SH free groups in the DSF–semolina spaghetti, with respect to that made of only semolina, suggest that polymerization among the different classes of proteins involves interaction by sulphydryl residues in blends with above 15% of DSF and that soy proteins tend to disrupt own gluten S–S interchange system. In the TSF–semolina spaghetti the increase of S–S bonds was higher with respect to that of –SH free, suggesting that the heat treatment, to which the TSF proteins were subjected, allowed them to cross link to semolina proteins by disulphide bonds.  相似文献   

11.
The development of gluten‐free spaghetti with a low amount of glycaemic carbohydrate was investigated. The goal of this study was to determine the chemical composition, cooking quality and starch digestibility of gluten‐free spaghetti elaborated with mixtures of chickpea, unripe plantain and maize flours. The gluten‐free spaghetti presented a higher protein, fat and ash content than the control semolina spaghetti. The solid loss among all the gluten‐free spaghetti was in the range of 10.04–10.91% and not significantly different from each other. These values were almost at the limit of acceptability to be considered as good cooking quality. Total starch in the gluten‐free spaghetti was lower than the control spaghetti. The lower available starch (AS) and higher resistant starch contents in the gluten‐free spaghetti were associated with their lower rate of hydrolysis and predicted glycaemic index. There is a potential for developing gluten‐free spaghetti with reduced amount of glycaemic carbohydrates from unconventional food ingredients such as chickpea, unripe plantain and maize flours.  相似文献   

12.
Common beans of the Mayocoba variety were cooked (178 min) and evaluated regarding their chemical composition and starch digestibility in vitro. Mean physical characteristics of the Mayocoba grain were: thousand‐kernel weight, 443.0 (±0.98)g; length, 12.45 mm; width 7.84 mm and thickness, 6.44 mm. Total starch content in Mayocoba bean was 40.24% (dmb). The available starch was 22.87%, whereas resistant starch accounted for 6.4% and retrograded resistant starch represented 3.3% of the cooked seed weight. None of these values changed with storage time. The Mayocoba variety presented values of soluble indigestible fraction of approximately 8.0% and insoluble indigestible fraction of 36%, which did not change with storage. Both simple enzymatic hydrolysis rate and hydrolysis index (HI = 36%) indicated a slow hydrolysis of Mayocoba starch. HI‐based predicted glycemic index was 39%, all of which suggested a ‘slow carbohydrate’ feature for this bean. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Specific mechanical energy (SME), mechanical energy, extrusion rate and temperature of extruded spaghetti were monitored to determine the effects of semolina, hydration level and non‐traditional ingredients on pasta extrusion using a semi‐commercial pasta press with a fixed screw speed of 25 rpm. SME transferred to the dough during extrusion and the temperature of extruded spaghetti were greater with strong than with weak gluten semolina and at low than at high absorption levels. When compared with semolina hydrated to 300 g kg?1 absorption, SME transferred to the dough was 13 kJ kg?1 lower for semolina mixed with buckwheat (Fagopyrum esculentum Moench.) bran flour, 47 kJ kg?1 lower for semolina mixed with flaxseed (Linum usitativissimum L.) flour and 7 kJ kg?1 lower for semolina mixed with wheat (Triticum turgidum var. durum L.) bran. Weak gluten semolina, high absorption levels and non‐traditional ingredients reduced the mechanical energy required for extrusion more than they reduced extrusion rate. The target temperature for extruded spaghetti was 45 °C. The temperature of extruded spaghetti containing flaxseed flour was below 45 °C whereas the temperature of spaghetti containing wheat bran was above 45 °C, regardless of semolina type or absorption level. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Spaghetti commonly made with durum wheat, typically lacks essential amino acids and with low fibre. Legumes offer potential to improve these properties and lupin is a good choice because it is cheaper with fewer antinutritional compounds than other legumes. Spaghetti was prepared with 0%, 5%, 17% and 30% lupin protein isolate (LPI) using both single-screw (SSEP) and twin-screw extrusion (TSEP). LPI increased protein up to 129%, reduced cooking time, water absorption and cooked firmness while stickiness and cooking loss were increased, especially using TSEP. LPI made the dried pasta more red and yellow and decreased brightness. The percentage of starch digested under in vitro conditions was reduced using 17%LPI with TSEP and 30%LPI with SSEP compared vs. control. Microscopy revealed changes in structure by LPI which may explain impacts on technological properties and digestion. Inclusion of LPI in pasta represents a potential approach for a low-cost improvement of nutritional value of spaghetti and potentially reducing its starch digestibility.  相似文献   

15.
Resistant starch in unripe banana offers a possibility to alter the glycemic properties in convenience foods, such as pasta. In this study, pasta formulations were tried by replacing 30% semolina with varying proportions of green banana flour (GBF) and banana-modified starch (MS). The effect of substitution on physicochemical and functional properties, including in-vitro starch digestibility, antioxidant property and consumer acceptability, was evaluated. Among the composite flours, MS recorded higher swelling power and water holding capacity. The replacement of semolina with GBF resulted in higher resistant starch, 4–5 times enhanced indigestible fraction, phenols, flavonoids and antioxidant activity in pasta. Pronounced increment was also observed in potassium, calcium and magnesium content in blended pasta. Optimal cooking time was reduced with the addition of GBF, whereas it was enhanced with MS. GBF and MS in the blends, decreased the hydrolysis rate (up to 24%) and glycemic index (up to 17%) of pasta. However, the addition of MS beyond 10% negatively influenced springiness and chewiness. Microstructural studies explained the positive structural changes with the addition of GBF and MS. Sensory attributes disclosed that the addition of 25% GBF and 5% MS is a desirable proportion for pasta with a functional characteristics.  相似文献   

16.
小麦粉品质和制面工艺对面条品质的影响研究   总被引:21,自引:5,他引:21  
以普通小麦为原料,以非传统细条实心面条为对象,研究了挤压温度,食盐含量及小麦粉品质对细细条实心面成品品质的影响。结果认为,升高加工温度,可以降低挤压阻力:提高食盐含量,增加挤压阻力。提高温度和食盐含量,都能增加面条的蒸吸水率和蒸煮干物质失落率。温度对面条蒸煮蛋白质的损失率影响较大。样品的蛋白质品质和淀粉的糊化特性对品质也有较大的影响。  相似文献   

17.
The characterisation of traditional Italian pasta obtained by mixing amounts of toasted whole meal with re-milled semolina and other ingredients was obtained by means of physico-chemical, rheological, mechanical, sensory and image analyses. The toasted meal showed higher ash, fibre and protein contents than re-milled semolina. The replacement of percentages of re-milled semolina with the toasted meal and soft flour increased tenacity and decreased extensibility and strength, making the dough less suitable for pasta-making. The P / L values were indices of high starch damage. The replacement of part of re-milled semolina and water with toasted whole wheat meal, soft flour and eggs increased the optimal cooking time and the amount of water absorbed during cooking but made the other cooking parameters worse. The image analysis provided evidence of the changes induced by the use of toasted wholemeal, soft flour and eggs in the microscopic structure of pasta protein and starch.  相似文献   

18.
选取市售8种颗粒小麦粉样品和1种普通小麦粉,测试评价二者的颗粒特性、理化品质、溶剂保持能力的区别,制作挂面以评价颗粒小麦粉的加工品质特性。结果表明,颗粒小麦粉的粒径分布与普通小麦粉之间差异显著(P<0.05),普通小麦粉中粒径(D50)为60.32μm,颗粒小麦粉中粒径(D50)均大于77.43μm。与普通小麦粉相比,颗粒小麦粉灰分和损伤淀粉含量低,面筋指数高、面筋质量好。除乳酸保持能力外,颗粒小麦粉的其余三种溶剂保持能力均显著低于普通小麦粉(P<0.05)。颗粒小麦粉挂面拥有良好的柔韧性和耐煮性,干物质吸水率和蒸煮损失率显著高于普通小麦粉挂面(P<0.05)。颗粒小麦粉挂面煮后的硬度、粘附性较低,延伸性较好,表现出较好的质地及爽滑不易断的特征。  相似文献   

19.
ABSTRACT:  Banana is a starchy food that contains a high proportion of undigestible compounds such as resistant starch and nonstarch polysaccharides. Products with low glycemic response such as pasta are considered favorable to health. The objective of this study was to use unripe banana flour to make spaghetti with low-carbohydrates digestibility and evaluate its physical and texture characteristics, as well as consumer preference. Formulations with 100% durum wheat semolina (control) and formulations with 3 semolina: banana flour ratios (85: 15, 70: 30, and 55: 45) were prepared for spaghetti processing. The use of banana flour decreased the lightness and diameter of cooked spaghetti, and increased the water absorption of the product. Hardness and elasticity of spaghetti were not affected by banana flour, but adhesiveness and chewiness increased as the banana flour level in the blend rose. Spaghettis prepared in the laboratory (control and those with banana flour) did not show differences in preference by consumers. In general, the preference of spaghettis with different banana flour level was similar. The addition of a source of undigestible carbohydrates (banana flour) to spaghetti is possible without affecting the consumer preference.  相似文献   

20.
Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory‐scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum‐containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号