首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pressureless sintering of titanium aluminum carbide (Ti3AlC2) is difficult due to its easy decomposability at high temperatures, thus decomposition must be avoided during sintering. In this work, pressureless sintering was performed in different embedded powders and Al4C3 was found to be effective to inhibit Ti3AlC2 from decomposition due to the offering of Al rich ambience. High-density Ti3AlC2 was obtained by pressureless sintering in Al4C3 powder bed without additives. The good sinterability is due to the special crystal structure of Ti3AlC2 and the easy diffusion of Al atoms. The mechanical properties of pressureless sintered Ti3AlC2 are comparable to those of the hot-pressed ones.  相似文献   

2.
Easy sinterable Ti3SiC2 powder was synthesized from a powder mixture with a molar ratio of 1.0 Ti, 0.3 Al, 1.2 Si, and 2.0 TiC by heating at 1200°C in the flowing Ar. Here, the Al powder acts as a deoxidation agent and provides a liquid phase for the reaction. The powder compacts subjected to pressureless sintering at 1300°C in Ar had a relative density up to 99%. The results of chemical analysis and the measured lattice constant suggest that the Al–Si liquid phase was formed at approximately 1200°C and that liquid‐phase sintering was promoted by the 0.1 molar ratio of Al and the 0.2 molar ratio of Si remaining in excess. The three‐point bending strength, fracture toughness, and electrical resistivity of the sintered samples were 380 MPa, 4.1 MPa m1/2, and 0.34μΩm, respectively.  相似文献   

3.
The oxidation and creep behaviors of textured Ti2AlC and Ti3AlC2 ceramics were characterized. The oxidation behavior of the two materials, which was studied in air at temperatures ranging from1000 to 1300 °C, was observed to be anisotropic and the materials exhibited a better oxidation resistance along a direction transverse to the c-axis. The correlation between the overall parabolic rate constant and oxidation temperature of both textured materials was characterized, providing new insights into the oxidation kinetics. The results indicate that the texturing has a negligible influence on the creep behavior in the assessed temperature range of 1000?1200 °C in air, for the applied stresses ranging from 40 to 80 MPa. In this stress regime, the creep behavior of textured Ti2AlC and Ti3AlC2 appears to be controlled by grain boundary sliding. This behavior can be rationalized based on a model for superplastic deformation, indicating pure-shear motion under stationary conditions accommodated by lattice or grain-boundary diffusion.  相似文献   

4.
《Ceramics International》2022,48(18):26618-26628
Oxidation and hot corrosion behaviours of Ti3SiC2, Ti2AlC and Cr2AlC at 750 °C were investigated in this work. Ti3SiC2 and Ti2AlC showed a linear increase in mass gain and a relatively poor oxidation resistance. This might be attributed to the porous TiO2 scale. A dense α-Al2O3 layer was formed during the oxidation test. Cr2AlC exhibited the best oxidation resistance. This dense oxide scale can effectively isolate the substrate from contact with oxygen leading to excellent oxidation resistance. In contrast to the oxidation test, Ti3SiC2 and Ti2AlC showed relatively better resistance to hot corrosion, while Cr2AlC showed inferior resistance to NaCl introduced hot corrosion. The hot corrosion mechanism of the MAX phases was analyzed. Due to the formation of Na2TiO3, Ti containing MAX phases showed a continuous increase in the mass gain. The corrosion products of Cr2AlC were Al2O3, Cr2O3 and Na2CrO4. However, due to the volatilization of Na2CrO4, Cr2AlC showed a mass loss during the hot corrosion test. The chemical reaction process of the MAX phase was also analyzed.  相似文献   

5.
本文利用TiC-Ti-Al体系的原位反应结合热压技术制备Ti<,3>AlC<,2>陶瓷.采用XRD和SEM分析产物的相组成和显微结构,并测量其密度和抗压强度.结果表明:经1450℃/2 h烧结后,产物主要由片状Ti<,3>AlC<,2>相和少量的TiC颗粒组成,密度约4.21 g/cm<'3>抗压强度达270.358 MPa.  相似文献   

6.
新型层状陶瓷材料Ti3AlC2结合了金属和陶瓷的许多优异性质,既具有与金属相似的良好的导热、导电性,良好的可加工性,相对柔软,抗热震性好,可塑性变形等;同时又具有与陶瓷相似的抗氧化、耐腐蚀、耐高温等特性;并且还有很好的自润滑性和超低摩擦系数,被认为在许多领域有着广泛的应用前景。  相似文献   

7.
Fine, pure Ti3AlC2 powder is prepared in a very mild condition via Ti3Al alloy and carbon black with the assistance of molten salts. X-ray diffraction, scanning electron microscopy, TG-DSC, and transmission electron microscopy (TEM) characterizations show that the high purity, nanosized Ti3AlC2 can be obtained at 900°C with the 1:1 salt-to-material ratio. The formation mechanism of Ti3AlC2 through this strategy of alloy raw material is fully studied under further TEM investigations, showing that the reaction process can basically be described as Ti3Al and C → TiAl and TiC → Ti2AlC and TiC → ψ and TiC → Ti5Al2C3 and TiC → Ti3AlC2, where the key ψ, a modulated Ti2AlC structure, is determined for the first time containing alternate-displacement Al layers along (0 0 0 2) of Ti2AlC phase with a distinct selected area electron diffraction pattern. Such alternant displacement is considered a precondition of forming Ti5Al2C3 through topotactic transition, followed by Ti5Al2C3 converting into Ti3AlC2 by the diffusion of Ti, C atoms in the outside TiC. Several parallel orientations can be observed through the phase transition process: Ti2AlC (0 0 0 2)//ψ (0 0 0 1), ψ (0 0 0 1)//Ti5Al2C3 (0 0 0 3), Ti5Al2C3 (0 0 0 3)//Ti3AlC2 (0 0 0 2). Such parallel orientations among these phases apply an ideal condition for the topotactic reaction. The distinct path of the phase transition brings a significant change of heat effect compared with the traditional method, leading to a fast reaction rate and a mild reaction condition.  相似文献   

8.
Nanolaminated Mn+1AXn phases as candidate materials for next generation nuclear reactor applications show great potential in tolerating radiation damage. However, different Mn+1AXn materials behave very differently when exposed to energetic neutron and ion irradiations. Based on first‐principle calculations, the radiation tolerance of two M3AX2 and four M2AX phases were studied in this work, covering all the Mn+1AXn phases previously investigated with experiments. We have calculated the formation energies of Frenkel pairs and antisite pairs in these materials. The improved radiation tolerance from Ti3AlC2 to Ti2AlC observed by experiments can be understood in terms of different Al/TiC layer ratio as the A atomic plane in the nanolaminated crystal Mn+1AXn accommodates radiation‐induced point defects. The formation of MA–AM antisite pair in Mn+1AXn materials would provide an alternative way to accommodate the defects resulted from radiation damage cascades, whereas this ideal substitution channel does not exist for Cr2GeC due to its pronouncedly higher MA–AM antisite pair formation energy. To further elucidate their radiation damage tolerance mechanism, we have made a detailed analysis on their interatomic M–X, M–A, and X–A bonding characters. Criteria based on the bonding analysis are proposed to assess the radiation tolerance of the six Mn+1AXn materials, which can be further applied to explore other Mn+1AXn phases with respect to their performances under radiation environment.  相似文献   

9.
以元素粉钛、铝、碳为原料,采用放电等离子烧结工艺在1100℃的温度下成功地制备了高纯、致密Ti2AlC材料.合成材料的X-射线衍射(XRD)和扫描电镜(SEM)分析的结果表明:多晶体Ti2AlC形貌为板状结晶,晶粒大小平均约为20μm,厚度在3~5μm.  相似文献   

10.
Ti3AlC2陶瓷的制备及其摩擦磨损性能   总被引:1,自引:0,他引:1  
吕振林  刘晶歌  肖琪聃  汪斌 《硅酸盐学报》2012,40(4):503-504,505,506
以钛、铝、碳粉为反应物原料,采用反应烧结技术制备了Ti3AlC2陶瓷,研究了各工艺参数对制备试样物理性能的影响,同时也对其摩擦磨损性能进行了分析。实验结果表明:按照摩尔比x(Ti):y(Al):z(C)=3.0:1.2:2.0的配比进行反应烧结,在1 300℃烧结0.5 h,能够制备出高纯致密的Ti3AlC2陶瓷,其质量含量高达94.6%,孔隙率为9.4%。当烧结温度过低时,得到的Ti3AlC2陶瓷含量较低,且杂质较多;当烧结温度过高时,会导致Ti3AlC2陶瓷发生分解反应。当载荷较小时,Ti3AlC2陶瓷磨损以磨损面的解理流变和粒子脱落造成的磨粒磨损为主;而载荷较大时,其磨损机理以轻微划痕和轻微黏着磨损为主。  相似文献   

11.
Highly textured Ti2AlC and Ti3AlC2 ceramics were successfully fabricated by a two-step fabrication process, and the Lotgering orientation factors for {00l} planes of textured Ti2AlC and Ti3AlC2 were calculated as 0.82 and 0.71, respectively. The effect of texturing was evaluated in terms of elastic modulus and hardness by macro- and micro-indentation. Moreover, the oxidation behavior of the MAX phases was investigated at 1300 °C in air, revealing that the oxidation was markedly anisotropic, where the textured side surface exhibited much better oxidation resistance, resulting from the rapid diffusion of Al element within its basal planes to form a protective Al2O3 scale on it. Furthermore, Ti2AlC had larger difference regarding oxidation behavior between the top and side surface than Ti3AlC2, correlated to its higher Al ratio, leading to higher texturing degree and more diffusion pathways to the outer surface to produce an Al2O3 layer already at the initial oxidation stage.  相似文献   

12.
热压烧结工艺制备Ti2AlC/Ti3AlC2陶瓷材料   总被引:1,自引:0,他引:1  
以Ti,Al,C为原料,采用热压工艺制备出相组成为Ti2AlC/Ti3AlC2块体材料,合成材料的X—射线衍射和扫描电镜(SEM)分析的结果表明:当烧结温度为1400℃时,材料中的主晶相为Ti2AlC,大小为10μm的板状多晶体;而在1500℃的温度下烧结所得材料的主晶相为Ti3AlC2,其板状多晶体的晶粒尺寸平均约为20μm。  相似文献   

13.
Ti-Al-C三元系统中Ti3AlC2,Ti2AlC和TiC物相含量的测定   总被引:2,自引:0,他引:2  
汪长安  周爱国  齐亮  黄勇 《硅酸盐学报》2004,32(9):1103-1108
研究了Ti-Al-C三元体系中X射线衍射定量相分析方法,提出了Ti3AlC2,Ti2AlC和TiC这3种物相的特征衍射峰Ti3AlC2的(002)衍射峰,2θ=9.5°;Ti2AlC的(002)衍射峰,2θ=13.0°;TiC的(111)衍射峰,2θ=35.9°.采用混样无标样法推导了一套Ti3AlC2,Ti2AlC和TiC的定量计算公式,根据其特征衍射峰的强度就可计算这3个物相的相对含量.因为该公式推导过程本身就验证了其正确性(即自验证性),所以这个公式可以广泛用于Ti-Al-C三元体系中Ti3AlC2,Ti2AlC和TiC物相的定量测定.因此,这种方法非常简便、易行.  相似文献   

14.
以Ti3AlC2和Cu粉作为原料,使用放电等离子烧结制备Cu/Ti3AlC2复合材料,研究了不同烧结温度对复合材料的影响。结果表明,在750~800℃之间,Cu与Ti3AlC2之间会发生反应生成TiC相。同时随着温度在650~850℃不断增加,密度和抗弯强度不断增加在850℃达到最大值分别为8.33 g·cm^-3和531.4 MPa,而电阻率先减小在750℃达到最小值1.98×10^-7Ω·m后增加在850℃达到最大值6.47×10^-7Ω·m。Cu/Ti3AlC2复合材料性能随着温度的变化与其致密度和反应生成TiC有着密切的联系。  相似文献   

15.
为了验证是否可以利用氢氟酸刻蚀Cr2AlC制备二维晶体MXene,本文采用气氛保护管式炉,在不同合成温度、保温时间及配比条件下制备出Cr2AlC样品,通过XRD图谱分析找出最佳原料配比为Cr∶ Al∶C =2∶ 1.1∶1,合成温度为1400℃,保温时间为1h.然后在此工艺条件下,制备疏松的样品,并用砂纸打磨去掉含有较多杂质的表层,然后把样品粉磨成大小不同的颗粒.这些颗粒放入氢氟酸中处理,将真空干燥后的反应产物进行XRD分析,结果表明Cr2AlC样品颗粒越小,反应时间越长,反应温度越高,HF酸浓度越高,Cr2AlC越容易被腐蚀,但是反应产物中均不存在二维晶体MXene,证明利用HF酸刻蚀Cr2 AlC制备二维晶体MXene的方法不可行.  相似文献   

16.
以Ti,Al,C微粉为原料,分别采用放电等离子(SPS)烧结工艺和热压工艺(HP)烧结制备Ti2AlC层状陶瓷材料。X射线衍射和扫描电镜(SEM)分析的结果表明:采用放电等离子(SPS)烧结工艺时,能够在1100℃的温度下制备高纯、致密Ti2AlC材料。采用热压工艺时,则很难合成高纯的Ti2AlC陶瓷材料。  相似文献   

17.
为了提高Ti_3Al C_2陶瓷的力学性能,本研究以Ti C粉、Ti粉、Al粉和V2O5粉为起始反应原料,采用原位热压技术在1350°C下反应烧结合成出了(Ti,V)_3AlC_2/Al_2O_3复合材料。利用X-射线衍射和扫描电子显微技术对合成产物的物相和微观结构进行了表征,并分析了复合材料的合成机制。最后,对(Ti,V)_3AlC_2/Al_2O_3复合材料的力学性能进行了研究。测试结果表明:(Ti_(0.92),V_(0.08))_3Al C_2/10wt%Al_2O_3复合材料具有最佳的力学性能,其硬度、断裂韧性及抗弯强度分别为5.56 GPa、12.93 MPa·m~(1/2)和435 MPa,相比于单相Ti_3Al C_2材料分别提升了60%、108%和31%。  相似文献   

18.
We have determined the energetics of defect formation and migration in Mn+1AXn phases with M = Ti, A = Si or Al, X = C, and n = 3 using density functional theory calculations. In the Ti3SiC2 structure, the resulting Frenkel defect formation energies are 6.5 eV for Ti, 2.6 eV for Si, and 2.9 eV for C. All three interstitial species reside within the Si layer of the structure, the C interstitial in particular is coordinated to three Si atoms in a triangular configuration (C–Si = 1.889 Å) and to two apical Ti atoms (C–Ti = 2.057 Å). This carbon–metal bonding is typical of the bonding in the SiC and TiC binary carbides. Antisite defects were also considered, giving formation energies of 4.1 eV for Ti–Si, 17.3 eV for Ti–C, and 6.1 eV for Si–C. Broadly similar behavior was found for Frenkel and antisite defect energies in the Ti3AlC2 structure, with interstitial atoms preferentially lying in the analogous Al layer. Although the population of residual defects in both structures is expected to be dominated by C interstitials, the defect migration and Frenkel recombination mechanism in Ti3AlC2 is different and the energy is lower compared with the Ti3SiC2 structure. This effect, together with the observation of a stable C interstitial defect coordinated by three silicon species and two titanium species in Ti3SiC2, will have important implications for radiation damage response in these materials.  相似文献   

19.
High-purity titanium aluminum carbide (Ti3AlC2) powders were synthesized by a microwave sintering method using different titanium sources as raw materials. The prepared products were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that the synthesized Ti3AlC2 powders have high purity (97.5%) and even distribution of the grain size when using a 3TiH2/1.2Al/2C mixture as raw materials when the microwave sintering temperature and time were 1300°C and 30 minutes, respectively. The formation mechanism of the Ti3AlC2 is described as proceeding via four stages. The solid-phase reaction between titanium and aluminum occurs below the melting point of aluminum and the main product is a Ti3Al phase, which is an observed intermediate compound for the formation of Ti2AlC and Ti3AlC2. Thus, this study provides a beneficial approach to low-temperature synthesis of high-purity Ti3AlC2 materials.  相似文献   

20.
《Ceramics International》2022,48(2):1745-1756
In this study, Ti3AlC2 particles doped aluminum matrix composites were prepared by ultrasonic agitation casting method. Microstructure, mechanical properties, and tribological properties of pure aluminum and Ti3AlC2p/Al composites were characterized. Influence of different loads (10, 20, 30, and 40 N) and Ti3AlC2 contents (1.0, 2.0, 3.0, and 4.0 wt%) on the tribological behaviors of the composites were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy dispersion spectroscopy (EDS), and 3D laser confocal were used to assist the analysis. The results indicated that fine and uniformly microstructure and the optimum comprehensive mechanical properties were exhibited on 2.0 wt%-Ti3AlC2p/Al composites. The abrasive grooves were widened and deepened with an increase in the load. The abrasion performance of composites improved distinctly with the addition of the Ti3AlC2 particles, which changed the wear mechanism from adhesive wear to abrasive wear. The 30 N load and the composites of 2.0 wt% Ti3AlC2 revealed the optimum tribological properties. The improvement of the tribological behavior of composites was attributed to the refinement of microstructure, the improvement mechanical properties and the three dimensional layered Ti3AlC2 phases with self-lubricating properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号