首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The polycarbosilane (PCS), which is the precursor of SiC fiber, was synthesized under high pressure by thermal decomposition of polydimethylsilane. The composition, structure, and properties of the PCS were characterized by the measurements of softening point, elemental analysis, IR, GPC, NMR, TG‐DTG‐DTA, XRD, and oxidative reaction activity, respectively. Structure model of the PCS was therefore inferred. The results showed that the PCS was the polymer with a Si? C backbone with Mn about 1587. IR and NMR showed the presence of SiC4 and SiC3H structure units containing Si? CH3, Si? CH2? Si, and Si? H groups. The ratio between H in C? H bond and H in Si? H bond was about 8.84 with SiC3H/SiC4 and about 0.51 from 1H NMR and 29Si NMR, respectively. Elemental analysis gave an empirical formula of SiC1.87H7.13O0.03. TG analysis showed that the ceramic yield of the PCS at 1200°C in a N2 flow was about 78.9%. β‐SiC microcrystal could be obtained when PCS was pyrolyzed at 1250°C with the crystal size about 37.5 Å. Compared with the PCS with similar softening point synthesized under normal pressure, the PCS synthesized under high pressure had approximate elemental composition, higher Si? H bond content and reaction activity, higher molecular weight, and higher ceramic yield, but lower ratio of SiC3H and SiC4. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1188–1194, 2006  相似文献   

2.
《Ceramics International》2023,49(16):26428-26439
Using low-cost and highly reactive bamboo charcoal, Ti and Si elemental powders as starting materials, Ti3SiC2 powder was synthesized via a simple and cost-efficient pressureless sintering technique in argon atmosphere. The influences of synthesis temperature, holding time and Si content on the Ti3SiC2 content of the synthesized products were investigated, and the analysis indicated that the relative content of Ti3SiC2 reached 98.9 wt% with a molar ratio of 3Ti/1.2Si/2.2C at 1400 °C for 1.5 h. The Ti3SiC2 with good crystallinity and homogeneous nanolayered structure was synthesized at lower temperatures due to the high reactivity and high specific surface area of bamboo charcoal. The non-isothermal oxidation behavior showed that Ti3SiC2 powder was stable in air below 540 °C. With the temperature increasing up to 1300 °C, continuous and dense TiO2 and SiO2 oxidation layers were formed on the surface of Ti3SiC2 particles, which conferred good oxidation resistance to Ti3SiC2 powder.  相似文献   

3.
The synthesis of Ti3SiC2 by pressureless reactive sintering of Ti/SiC/C mixtures under an Ar atmosphere has been studied using in situ neutron diffraction. The intermediate phases TiCx and Ti5Si3Cx (x≤ 1) form first at ∼800–1400°C. These phases are consumed in the formation of Ti3SiC2, at ∼1500°C. After sintering, Ti5Si3Cx disappears but an amount of TiCx remains in the sample primarily as a surface layer. The studies appear to support a suggestion that the intermediate phases react to form Ti3SiC2 through a diffusion-controlled process. Prolonged stepwise heating under argon in some experiments resulted in decomposition of Ti3SiC2 above ∼1400°C and significant disproportionation of the sample.  相似文献   

4.
The thermal decomposition of Ti3SiC2 in vacuum furnace up to 1500°C has been investigated. The results show that the mild decomposition of Ti3SiC2 commences at 1300°C and the higher the holding temperature, the larger the volatilization of Si atoms. The Ti3SiC2 decomposition occurs simultaneously on the surface and in the bulk. Four phases coexist at 1400°C and 1450°C and the Ti5Si3Cx phase appears in the bulk and/or surface. Diffusion distance, rate, and volatilization of Si contribute to the porous structure and the presence of Ti5Si3Cx. The evolution of furnace pressure reflects the decomposition kinetics of Ti3SiC2.  相似文献   

5.
《应用陶瓷进展》2013,112(3):162-166
Abstract

3Ti–Si–2C–0·2Al mixture powders were used to fabricate high purity Ti3SiC2 ceramic through mechanical alloying (MA) and spark plasma sintering (SPS). The effect of ball milling time on the fabrication of Ti3SiC2 by SPS was also investigated. The results showed that the mixed powders were obviously refined after the MA of 5 h. After milling of 10 h, the mixed powders containing TiC, Ti3SiC2 were synthesised by a mechanically induced self-propagating reaction. After further milling to 20 h, the yield powders were refined. Ball milling time had a remarkable effect on SPS fabrication of Ti3SiC2. A shorter milling time of 5 h only helped to increase the Ti3SiC2 content in the sintered bulk. The samples subjected to the MA treatment of 20 h had a fine and dense organisation. Ball milling of 10 h was most beneficial for fabricating dense and high purity Ti3SiC2. Ti3SiC2 bulk with a purity of 96 wt-% was obtained by MA for 10 h and subsequent SPS at 850°C. When sintered at 1100°C, Ti3SiC2 bulk with a purity of 99·3 wt-% and a relative density of 98·9% was obtained.  相似文献   

6.
Titanium silicon carbide (Ti3SiC2) is a remarkable friction material for its combination of the best properties of metals and ceramics. The high purity Ti3SiC2 ceramic has been prepared by infiltration sintering (IS), and the effect of a small amount of Si on Ti3SiC2 ceramic formation was investigated. The results show that the purity of Ti3SiC2 ceramic could be increased significantly and the sintering time for Ti3SiC2 could be decreased remarkably when proper amount of Si was added in the starting mixture. The Ti3SiC2 sintered compact with a purity of 99.2?wt-% and a relative density of 97% was obtained by the IS from a starting mixture composed of n(Ti):n(Si):n(TiC)?=?1:0.3:2 at 1500°C with holding time of 2/3?h.  相似文献   

7.
Synthesis of Ti3SiC2 powder was carried out by heat treating powder mixtures of Si, TiC and coarse Ti (−150 μm) in a temperature range of 1000–1400 °C. The phase content of Ti3SiC2 in the synthesized powder was improved to 99% when heat treated at 1400 °C for 4 h. Ti–Si liquid reaction was found to occur above the binary eutectic temperature, and this liquid reaction is believed to have assisted the synthesis reaction of Ti3SiC2.  相似文献   

8.
《应用陶瓷进展》2013,112(5):288-293
Thermal stability of Ti3SiC2 was investigated at 1200–1400°C in hydrogen atmosphere for 3 hours. The hydrogenation mechanism was clarified by a combination of X-ray diffraction, scanning electron microscope, Raman spectroscopy and first principles calculation. At 1200°C, a dense and uniform TiSi2 layer formed on the sample surface, which originated from both the preferable lose of silicon from the Ti3SiC2 substrate and the dissociation of Ti3SiC2. As temperature increased to 1300°C, TiSi2 layer began to scale off and presented laminated Ti3SiC2 grains beneath this layer, which indicated preferential hydrogenation occurred along the basal planes. This phenomenon was ascribed to the fact that the introduction of H interstitial atom weakened the combination between titanium and silicon interface layer, which was confirmed by first principles calculations. In addition, the formation of TiSi2 owing to the dissociation of Ti3SiC2 caused the volume expansion after hydrogenation, resulting in that majority of TiSi2 layer spelled off at 1400°C.  相似文献   

9.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

10.
《Ceramics International》2017,43(9):7290-7294
Herein we study the joining of Ti3SiC2 - a MAX phase - with a Ti filler (Ti3SiC2/Ti-filler) using a TIG-brazing process. The microstructures of the interfaces were investigated by scanning electron microscopy and energy dispersive spectrometry. When Ti3SiC2 comes into contact with the molten Ti - filler during the TIG-brazing operation, it starts decomposing into TiCx and a Si-rich liquid. Simultaneously, the molten Ti infiltrates into the Ti3SiC2 resulting in a 200 µm thick duplex region, comprised of TiCx and a Ti-rich phase with some dissolved Si. Both Si and C are found in the solidified Ti; the Si source is from the Si-rich liquid, while the presence of C indicates that some of the C diffused into the Ti. Upon cooling, C- containing Ti- rich lamellae form the solidified Ti. Microindentation results of the decomposed Ti3SiC2 layer show an increase in hardness and a decrease in elastic modulus relative to T3SiC2. Notably, no cracks were observed.  相似文献   

11.
Reliable contact-reactive brazed joints of TC4 alloy and Ti3SiC2 ceramic were obtained using a Cu interlayer. The interfacial microstructure of a TC4/Ti3SiC2 joint brazed at 920?°C for 10?min was TC4/Ti2Cu +?α-Ti +?β-Ti/Ti2Cu +?AlCu2Ti +?Ti5Si3/Ti5Si3 +?Ti5Si4/Ti3SiC2. The interfacial microstructure and mechanical properties of TC4/Ti3SiC2 joints brazed at different temperatures were investigated. With increasing temperature, the shear strength of the brazed joints first increased and then decreased. The maximum shear strength was 132?±?8?MPa, and the corresponding fracture occurred along the Ti–Si reaction layer and the Ti3SiC2 substrate adjacent to the Ti–Si reaction layer. The microhardness test also demonstrated that the Ti–Si reaction layer possessed the highest microhardness, 812?±?22 HV. The Ti-Si reaction layer was the weakest part of the brazed joints. To eliminate the Ti-Si reaction layer and improve the mechanical properties of TC4/Ti3SiC2 brazed joints, a 40-μm Ni layer was plated on the surface of the Ti3SiC2 ceramic before brazing. The results showed that the Ti–Si reaction layer that formed adjacent to the Ti3SiC2 ceramic was thin and intermittent. Moreover, the interface between the Ti3SiC2 ceramic and the TC4 alloy became jagged. The shear strength of the TC4/nickel-plated Ti3SiC2 brazed joints improved to 148?±?8?MPa; the corresponding fracture occurred mainly in the Ti3SiC2 ceramic and only a small portion of the fracture occurred in the brazing seam.  相似文献   

12.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

13.
Ti3SiC2 was rapidly synthesized and simultaneously consolidated from the starting mixture of Ti/Si/2TiC by spark plasma sintering (SPS). An intensive reaction leading to the formation of Ti3SiC2 occurred at the measured temperature of around 1200 °C, which is several hundreds degrees lower than that of conventional reactive hot pressing. The phase composition of the product could be tailored by adjusting the process parameters. An axisymmetric preferred orientation of the Ti3SiC2 grains with well-developed (008) planes was formed, resulting in an anisotropic hardness in respect to the textured product.  相似文献   

14.
We have determined the energetics of defect formation and migration in Mn+1AXn phases with M = Ti, A = Si or Al, X = C, and n = 3 using density functional theory calculations. In the Ti3SiC2 structure, the resulting Frenkel defect formation energies are 6.5 eV for Ti, 2.6 eV for Si, and 2.9 eV for C. All three interstitial species reside within the Si layer of the structure, the C interstitial in particular is coordinated to three Si atoms in a triangular configuration (C–Si = 1.889 Å) and to two apical Ti atoms (C–Ti = 2.057 Å). This carbon–metal bonding is typical of the bonding in the SiC and TiC binary carbides. Antisite defects were also considered, giving formation energies of 4.1 eV for Ti–Si, 17.3 eV for Ti–C, and 6.1 eV for Si–C. Broadly similar behavior was found for Frenkel and antisite defect energies in the Ti3AlC2 structure, with interstitial atoms preferentially lying in the analogous Al layer. Although the population of residual defects in both structures is expected to be dominated by C interstitials, the defect migration and Frenkel recombination mechanism in Ti3AlC2 is different and the energy is lower compared with the Ti3SiC2 structure. This effect, together with the observation of a stable C interstitial defect coordinated by three silicon species and two titanium species in Ti3SiC2, will have important implications for radiation damage response in these materials.  相似文献   

15.
Ultra-high temperature ceramic-modified C/C composites (C/C-UHTCs) were prepared by the reactive infiltration of K2MeF6 (Me = Zr, Ti) mixed with Si and Zr-Si powders. Molten salt infiltration can be divided into two stages: salt ion melt and Me-Si alloy melt. In the temperature range below 1400 °C, Zr and Si dissolve in the molten salt, are carried by the ion melt, and precipitate at the PyC interface to form carbides. Above 1400 °C, a large amount of molten salt volatilises and thermally decomposes. The Me-Si alloy forms a melt and infiltrates the C/C matrix, and finally forms C/C-ZrC-SiC, C/C-Ti3SiC2-SiC, and C/C-ZrC-TiC-SiC composites. The C/C-ZrC-SiC composite with the highest ZrC content exhibited the lowest mass rate (2.6 ± 0.02 mg/s) and linear ablation rate (0.82 ± 0.04 μm/s), which were reduced by 43.5 and 50.8 %, respectively, compared to the unmodified C/C-ZrC-SiC composite.  相似文献   

16.
Ti–Si–C (TSC) composite coatings were fabricated by plasma spraying using Ti/Si/graphite agglomerates as feedstock. Ar-annealing was carried out to reduce the intrinsic defects and increase the performance of the as-sprayed TSC coating. The effects of the annealing temperature (500–900 °C) on the microstructures and mechanical performances of the TSC coatings were investigated. All TSC coatings consisted of TiC, Ti5Si3 and MAX phase Ti3SiC2. With the increase in temperature (>700 °C), TiC became predominant, while the Ti3SiC2 phase content increased, which was accompanied by a decrease in Ti5Si3 content. The high -temperature annealing (>700 °C) led to a homogenous microstructure with a relatively low porosity and increased number of micro-cracks. Notably, the hardness and fracture toughness of the TSC coating were simultaneously increased after the annealing, from 1164 HV to 1.96 MPa m1/2 to 1560 HV and 3.45 MPa m1/2, respectively. The formation of nanoscale TiC and Ti5Si3 with a network distribution, uniform and dense microstructure, and toughening effects of Ti3SiC2 and micro-cracks provided the high mechanical performances of the TSC composite coatings.  相似文献   

17.
Polycrystalline bulk samples of (Ti1-yMey)3SiC2, where Me=Fe or V and y=0.01 to 0.1, were fabricated by reactive hot isostatic pressing of a mixture of Ti, C (graphite), SiC and Fe or V at 1450°C for 4 h under a pressure of 60 MPa. X-ray diffraction and scanning electron microscopy of the fully dense samples have shown that small amounts of Fe and V interfere with the reaction between Ti, C and SiC leading to the presence of SiC, TiCx, as well as different Fe and V-containing phases in the final microstructures. The presence of these impurity phases also reduces the temperature at which Ti3SiC2 decomposes. The decomposition is manifested by the formation of a network of pores when the samples are annealed at 1600°C, a temperature at which pure Ti3SiC2 is thermally stable. The concentration threshold for this decomposition is as low as 1 at%.  相似文献   

18.
Magnetron sputtering deposition of Mo and Zr and subsequent annealing were conducted with the motivation to modify the surface hardness of Ti3SiC2. For Mo-coated Ti3SiC2, Si diffused outward into the Mo layer and reacted with Mo to form molybdenum silicides in the temperature range of 1000–1100 °C. The MoSi2 layer, however, cracked and easily spalled off. For Zr-coated Ti3SiC2, Si also diffused outward to form Zr–Si intermetallic compounds at 900–1100 °C. The Zr–Si compounds layer had good adhesion with Ti3SiC2 substrate, which resulted in the increased surface hardness.  相似文献   

19.
《Ceramics International》2020,46(9):12948-12954
Ti–Si–C–Mo composite coatings were fabricated by plasma spraying using Ti, Si, graphite and Mo powders. The effect of Mo on microstructure and tribological performance of the Ti–Si–C coatings were investigated. The results showed that the Ti–Si–C coating consisted of TiC, Ti3SiC2, Ti5Si3, and residual graphite. The Ti–Si–C–Mo coatings consisted of TiC, Ti3SiC2, Ti5Si3, residual graphite, Mo and Mo5Si3 phases. With increasing Mo contents, the fractions of Mo and Mo5Si3 phases increased, and the fractions of Ti3SiC2 and Ti5Si3 phases decreased. All the coatings existed a typical lamellar structure. The addition of Mo enhanced the hardness and fracture toughness of Ti–Si–C coating by 16% and 52%, respectively. The coating porosity decreased by 57.6%. The wear resistance of the Ti–Si–C coating was also improved and the mass loss decreased by 83%. The wear mechanism of the Ti–Si–C–Mo coatings was the combination of abrasive wear, adhesive wear, and tribo-oxidation wear.  相似文献   

20.
TiC/Ti3SiC2 composites were synthesized with Ti/Si/C and Al (in which extra C addition ranges from 0 to 25 wt.%) as starting powders by hot-pressed sintering method at 1400 °C under 30 MPa. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to evaluate the phase composition and the fracture surface. The results reveal that with the increase of extra C addition, the content of Ti3SiC2 phase decreases while the content of TiC phase increases. Graphite phase is detected in the samples with extra C addition of 20 wt.% and 25 wt.%. The bending strength decreases from 554.81 MPa to 57.44 MPa due to the decrease of the densification and Ti3SiC2 phase content. The electrical conductivity falls from 42,474.52 s/cm to 1524.95 s/cm, resulting from lower Ti3SiC2 phase content and higher contact resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号