首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
在属性网络中,与节点相关联的属性信息有助于提升网络嵌入各种任务的性能,但网络是一种图状结构,节点不仅包含属性信息还隐含着丰富的结构信息。为了充分融合结构信息,首先通过定义节点的影响力特性、空间关系特征;然后根据链接预测领域基于相似度的定义构建相似度矩阵,将节点二元组中的关联向量映射到相似度矩阵这一关系空间中,从而保留与节点相关的结构向量信息;再基于图的拉普拉斯矩阵融合属性信息和标签特征,将上述三类信息集成到一个最优化框架中;最后,通过二阶导数求局部最大值计算投影矩阵获取节点的特征表示进行网络嵌入。实验结果表明,提出的算法能够充分利用节点二元组的邻接结构信息,相比于其他基准网络嵌入算法,本模型在节点分类任务上取得了更好的结果。  相似文献   

2.
对现有的社会网络社团发现算法进行研究,发现存在算法时间复杂度高、准确率低和没有充分利用节点属性信息等问题,提出了一种基于节点相似度的社团发现算法以解决这些问题。综合考虑图的拓扑结构和节点属性信息,结合构造属性扩展图的思想和基于结构情境相似度的思想得到节点的相似度,利用改进的K-means算法对所有节点进行聚类得到社团结构。编程实验结果表明,使用该算法得到的社团准确率较高,算法的时间复杂度为线性的,在带属性的数据集上和不带属性的数据集上的测试结果均验证了算法的有效性。  相似文献   

3.
在图结构数据上开展推理计算是一项重大的任务,该任务的主要挑战是如何表示图结构知识使机器可以快速理解并利用图数据。对比现有表示学习模型发现,基于随机游走方法的表示学习模型容易忽略属性对节点关联关系的特殊作用,因此提出一种基于节点邻接关系与属性关联关系的混合随机游走方法。首先通过邻接节点间的共同属性分布计算属性权重,并获取节点到每个属性的采样概率;然后分别从邻接节点与含有共有属性的非邻接节点中提取网络信息;最后构建基于节点-属性二部图的网络表示学习模型,并通过上述采样序列学习得到节点向量表达。在Flickr、BlogCatalog、Cora公开数据集上,用所提模型得到的节点向量表达进行节点分类的Micro-F1平均准确率为89.38%,比GraphRNA(Graph Recurrent Networks with Attributed random walks)高出了2.02个百分点,比经典工作DeepWalk高出了21.12个百分点;同时,对比不同随机游走方法发现,提高对节点关联有促进作用的属性的采样概率可以增加采样序列所含信息。  相似文献   

4.
针对现有的图表示学习在自监督对比学习方法中存在视图差异较大,且依赖于负样本防止模型坍塌,导致节点表示能力弱及空间复杂度加大的问题,提出一种基于双重视图耦合的自监督图表示学习模型(self-supervised graph representation learning model with dual view coupling, DVCGRL),用于学习图数据表示。采用特征空间增广和结构空间扩充相结合生成双重视图,将双重视图作为正样本对输入孪生神经网络;利用图编码器提取图数据特征,通过多层感知器获得映射后的特征向量;采用耦合网络拉近双重视图的特征向量距离,提升节点表示能力,防止模型坍塌。在公开数据集上进行的节点分类实验结果表明,与当前主流图表示学习模型相比,该模型降低了空间复杂度,节点分类精度得到明显提高。  相似文献   

5.
陈可佳  杨泽宇  刘峥  鲁浩 《计算机应用》2019,39(12):3415-3419
邻域的组成对于基于空间域的图卷积网络(GCN)模型有至关重要的作用。针对模型中节点邻域排序未考虑结构影响力的问题,提出了一种新的邻域选择策略,从而得到改进的GCN模型。首先,为每个节点收集结构重要的邻域并进行层级选择得到核心邻域;然后,将节点及其核心邻域的特征组成有序的矩阵形式;最后,送入深度卷积神经网络(CNN)进行半监督学习。节点分类任务的实验结果表明,该模型在Cora、Citeseer和Pubmed引文网络数据集中的节点分类准确性均优于基于经典图嵌入的节点分类模型以及四种先进的GCN模型。作为一种基于空间域的GCN,该模型能有效运用于大规模网络的学习任务。  相似文献   

6.
网络嵌入的目的是学习网络中每个节点的低维稠密向量,该问题吸引了研究者的广泛关注.现有方法大多侧重于对图结构的建模,而忽略了属性信息.属性化网络嵌入方法虽然考虑了节点属性,但节点与属性之间的信息关系尚未得到充分的利用.提出了一种利用丰富的关系信息进行属性网络嵌入的新框架.为此,我们首先为属性网络构造节点及其属性之间的复合关系,随后提出一个复合关系图卷积网络(composite relation graph convolution network, CRGCN)模型对这2种网络中的复合关系进行编码.在真实世界的数据集上进行了广泛的实验,结果证明了该模型在多种社交网络分析的有效性.  相似文献   

7.
林景栋  萧绪泉 《控制工程》2012,19(1):106-109
针对RSSI测距定位技术在室内环境中受到的随机干扰大,干扰变化情况不确定,定位结果误差较大的问题,提出了一种基于无线传感器网络节点相似度的室内定位算法。首先通过无线传感器网络的连通特性确定位于网络盲节点周围的几个信标节点,利用数据拟合的方法确定节点工作电压对RSSI距离测量的影响,然后根据拟合结果对不同工作电压下测得的RSSI值进行修正,利用修正后得到的RSSI值计算得到网络节点之间的相似度值,并利用该相似度值作为距离测量和定位结果的自校正系数,对定位结果进行修正,从而获得精度较高的定位效果。实验结果表明该定位算法具有较高的定位精度。  相似文献   

8.
相较于传统的图数据分析方法,图嵌入算法是一种面向图节点的新型图数据分析策略.其旨在通过将图节点向量化表达,进而在节点向量基础上,利用神经网络相关技术,更有效地进行图数据分析或挖掘工作,如在节点分类、链接预测及交通流预测等经典问题上效果显著.虽然研究者们在图嵌入方面已取得了诸多成果,但是面向时序图的节点嵌入问题却未被充分...  相似文献   

9.
提出了一种基于相似度传播的复杂网络间节点匹配方法.引入节点相似度传播过程,使得初始的相似度信息能够按网络拓扑结构传播到全局,从而能够充分利用有限数目已匹配节点对所提供的相似度信息.该传播过程的稳态分布与一个大矩阵的主特征向量等价,可采用幂方法的迭代形式来高效求解,最后利用图论中的KM(Kuhn-Munkres)算法来抽取最终的匹配节点对.以四种不同结构的网络节点匹配实验为例,对本文算法进行了测试和验证.实验统计结果表明,本文方法显著提高了节点匹配的精度.  相似文献   

10.
属性网络嵌入旨在学习网络中节点的低维表示,具有拓扑和属性相似的节点在嵌入空间彼此接近.注意力机制能有效学习网络中节点与其邻居的相对重要性并基于邻居重要性聚合节点表示.据此,提出一种在属性网络中融合双层注意力机制的节点嵌入算法NETA,可以有效地实现属性网络嵌入.该算法首先从拓扑结构捕获直接邻居,基于属性关系捕获间接邻居...  相似文献   

11.
针对基于图卷积的自编码器模型对原始图属性和拓扑信息的保留能力有限、无法学习结构和属性之间深度关联信息等问题,提出基于多通道图卷积自编码器的图表示学习模型。设计拓扑和属性信息保留能力实验,验证了基于图卷积的自编码器模型具备保留节点属性和拓扑结构信息的能力。构建特定信息卷积编码器和一致信息卷积编码器,提取图的属性空间特征、拓扑空间特征以及两者关联特征,生成属性嵌入、拓扑嵌入和一致性嵌入,同时建立与编码器对称的卷积解码器,还原编码器过程。使用重构损失、局部约束和一致性约束,优化各编码器生成的低维嵌入表示。最终将蕴含不同图信息的多种嵌入进行融合,生成各节点的嵌入表示。实验结果表明,该模型在BlogCatalog和Flickr数据集上节点分类的Micro-F1和Macro-F1明显高于基线模型,在Citeseer数据集上节点聚类的精度和归一化互信息相比于表现最优的基线模型提升了11.84%和34.03%。上述实验结果证明了该模型采用的多通道方式能够在低维嵌入中保留更丰富的图信息,提升图机器学习任务的性能表现。  相似文献   

12.
作为一种语义知识库,知识图谱(KG)使用结构化三元组的形式存储真实世界的实体及其内在关系。为了推理知识图谱中缺失的真实三元组,考虑关系记忆网络较强的三元组表征能力和胶囊网络强大的特征处理能力,提出一种基于关系记忆的胶囊网络知识图谱嵌入模型。首先,通过编码实体和关系之间的潜在依赖关系和部分重要信息形成编码嵌入向量;然后,把嵌入向量与过滤器卷积以生成不同的特征图,再重组为对应的胶囊;最后,通过压缩函数和动态路由指定从父胶囊到子胶囊的连接,并根据子胶囊与权重内积的得分判断当前三元组的可信度。链接预测实验的结果表明,与CapsE模型相比,在倒数平均排名(MRR)和Hit@10评价指标上,所提模型在WN18RR数据集上分别提高了7.95%和2.2个百分点,在FB15K-237数据集上分别提高了3.82%和2个百分点。实验结果表明,所提模型可以更准确地推断出头实体和尾实体之间的关系。  相似文献   

13.
知识表示学习旨在将知识图谱中的实体和关系表示成低维稠密实值向量,能有效缓解知识图谱的数据稀疏性和显著提升计算效率。然而,现有大多数知识表示学习方法仅将实体视为三元组的一个组成部分,没有考虑实体自身具有的特质,如实体相似性。为了加强嵌入向量的语义表达,提出基于实体相似性的表示学习方法SimE。该方法首先利用实体的结构邻域度量实体的相似性,再将实体的相似性和拉普拉斯特征映射结合作为基于三元组事实的表示学习方法的约束,形成联合表示。实验结果表明,该方法在链接预测和三元组分类等任务上与目前最好的方法性能接近。  相似文献   

14.
针对如何融合节点自身属性以及网络结构信息实现社交网络节点分类的问题,提出了一种基于图编码网络的社交网络节点分类算法。首先,每个节点向邻域节点传播其携带的信息;其次,每个节点通过神经网络挖掘其与邻域节点之间可能隐含的关系,并且将这些关系进行融合;最后,每个节点根据自身信息以及与邻域节点关系的信息提取更高层次的特征,作为节点的表示,并且根据该表示对节点进行分类。在微博数据集上,与经典的深度随机游走模型、逻辑回归算法有以及最近提出的图卷积网络算法相比,所提算法分类准确率均有大于8%的提升;在DBLP数据集上,与多层感知器相比分类准确率提升4.83%,与图卷积网络相比分类准确率提升0.91%。  相似文献   

15.
杜雨奇  郑津  王杨  黄诚  李平 《计算机应用》2022,42(12):3692-3699
文本分割的主要任务是将文本按照主题相关的原则划分为若干个相对独立的文本块。针对现有文本分割模型提取文本段落结构信息、语义相关性及上下文交互等细粒度特征的不足,提出了一种基于图卷积网络(GCN)的文本分割模型TS-GCN。首先,基于文本段落的结构信息与语义逻辑构建出文本图;然后,引入语义相似性注意力来捕获文本段落节点间的细粒度相关性,并借助GCN实现文本段落节点高阶邻域间的信息传递,以此增强模型多粒度提取文本段落主题特征表达的能力。将所提模型与目前常用作文本分割任务基准的代表模型CATS及其基础模型TLT-TS进行对比。实验结果表明在Wikicities数据集上,TS-GCN在未增加任何辅助模块的情况下比TLT-TS的评价指标Pk值下降了0.08个百分点;在Wikielements数据集上,相较于CATS和TLT-TS,所提模型的Pk值分别下降了0.38个百分点和2.30个百分点,可见TLT-TS取得了较好的分割效果。  相似文献   

16.
为解决社会关系网络图中节点没有坐标值、不能采用传统的欧几里得距离和曼哈坦距离进行聚类的问题,提出采用最短路径算法,来衡量点与点之间的相异度.针对最短路径算法具有时间复杂度大的缺点,引入基于参考节点嵌入的最短距离估算思想来估算两点之间的近似距离.在此基础上,针对DBLP数据集构成的社会关系网络图进行聚类,使用基于划分的k-medoids算法,分别采用以上两种距离算法,比较其优劣.实验证明改进后的算法和最短路径算法中的Dijkstra 算法相比,距离误差率小,时间复杂度大大降低,在提高效率的同时,取得了同样好的聚类效果.  相似文献   

17.
图聚集技术是将一个大规模图用简洁的小规模图来表示,同时保留原始图的结构和属性信息的技术。现有算法未同时考虑节点的属性信息与边的权重信息,导致图聚集后与原始图存在较大差异。因此,提出一种同时考虑节点属性信息与边权重信息的图聚集算法,使得聚集图既保留了节点属性相似度又保留了边权重信息。该算法首先定义了闭邻域结构相似度,通过一种剪枝策略来计算节点之间的结构相似度;其次使用最小哈希(MinHash)技术计算节点之间的属性相似度,并调节结构相似与属性相似所占的比例;最后,根据2方面相似度的大小对加权图进行聚集。实验表明了该算法可行且有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号