共查询到19条相似文献,搜索用时 80 毫秒
1.
准确、高效的乳腺癌病理图像分类是计算机辅助诊断的重要研究内容之一。随着机器学习技术的发展,深度学习日渐成为一种有效的乳腺癌病理图像分类处理方法。分析了乳腺癌病理图像分类方法及目前存在的问题;介绍了四种相关的深度学习模型,对基于深度学习的乳腺癌病理图像分类方法进行梳理,并通过实验对比分析现有模型的性能;最后对乳腺癌病理图像分类的关键问题进行了总结,并讨论了未来研究的发展趋势。 相似文献
2.
膀胱癌的发病呈现增高的趋势,对放射科医生来说,检测和分类膀胱恶性肿瘤是一项耗时较大的工作.近年来,计算机辅助诊断系统的进步以及深度学习(Deep learning)的发展,使其成为医学图像处理的有力工具.文章提出一种基于深度卷积神经网络的膀胱癌MRI图像的优化模型,得到适合膀胱肿瘤MRI图像分级和分期预测的算法,取得较... 相似文献
3.
胸主动脉瘤和夹层(TAAD)是严重的心血管疾病之一,而中膜变性(MD)的组织学改变对疾病的诊断及早期干预具有重要的临床意义。针对病理图像的高度复杂性使得MD的诊断过程耗时费力且一致性差的问题,提出了一种基于深度学习的病理图像分类方法,并将其应用于四种MD病变类型以进行性能验证。该方法使用了一种改进的基于GoogLeNet的卷积神经网络模型,首先采用迁移学习来将先验知识应用于TAAD病理图像的表达,然后使用Focal loss和L2正则化来解决数据不平衡问题,从而进一步优化模型性能。实验结果表明,所提模型的平均四分类准确率达到98.78%,表现出较好的泛化性能。可见所提方法可以有效地提升病理学家的诊断效率。 相似文献
5.
深度学习技术在医学图像分析领域发展得非常好,但医学图像注释成本高,使得深度学习技术在医学图像分析领域受到阻碍.主动学习算法是目前解决注释成本高的一个研究热点.文章介绍了在医学图像分析领域中采用主动深度学习降低注释成本的技术手段和方法,以便相关人员了解目前的研究进展.最后对主动学习方法仍存在的问题和发展趋势进行了总结和展... 相似文献
6.
多模态医学图像可以为临床医生提供靶区(如肿瘤、器官或组织)的丰富信息。然而,由于多模态图像之间相互独立且仅有互补性,如何有效融合多模态图像并进行分割仍是亟待解决的问题。传统的图像融合方法难以有效解决此问题,因此基于深度学习的多模态医学图像分割算法得到了广泛的研究。从原理、技术、问题及展望等方面对基于深度学习的多模态医学图像分割任务进行了综述。首先,介绍了深度学习与多模态医学图像分割的一般理论,包括深度学习与卷积神经网络(CNN)的基本原理与发展历程,以及多模态医学图像分割任务的重要性;其次,介绍了多模态医学图像分割的关键概念,包括数据维度、预处理、数据增强、损失函数以及后处理等;接着,对基于不同融合策略的多模态分割网络进行综述,对不同方式的融合策略进行分析;最后,对医学图像分割过程中常见的几个问题进行探讨,并对今后研究作了总结与展望。 相似文献
8.
乳腺癌病理图像的自动分类具有重要的临床应用价值。基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性。 相似文献
9.
针对深度卷积神经网络能够有效提取图像深层特征的能力,选择在图像分类工作中表现优异的GoogLeNet和AlexNet模型对胃癌病理图像进行诊断。针对医学病理图像的特点,对GoogLeNet模型进行了优化,在保证诊断准确率的前提下降低了计算成本。在此基础上,提出模型融合的思想,通过综合不同结构和不同深度的网络模型,来学习更多的图像特征,以获取更有效的胃癌病理信息。实验结果表明, 相比原始模型 ,多种结构的融合模型在胃癌病理图像的诊断上取得了更好的效果。 相似文献
10.
肝脏肿瘤的精确分割是肝脏疾病诊断、手术计划和术后评估的重要步骤。计算机断层成像(computed tomography,CT)能够为肝脏肿瘤的诊断和治疗提供更为全面的信息,分担了医生繁重的阅片工作,更好地提高诊断的准确性。但是由于肝脏肿瘤的类型多样复杂,使得分割成为计算机辅助诊断的重难点问题。肝脏肿瘤CT图像的深度学习分割方法较传统的分割方法取得了明显的性能提升,并获得快速的发展。通过综述肝脏肿瘤图像分割领域的相关文献,本文介绍了肝脏肿瘤分割的常用数据库,总结了肝脏肿瘤CT图像的深度学习分割方法:全卷积网络(fully convolutional network,FCN)、U-Net网络和生成对抗网络(generative adversarial network,GAN)方法,重点给出了各类方法的基本思想、网络架构形式、改进方案以及优缺点等,并对这些方法在典型数据集上的性能表现进行了比较。最后,对肝脏肿瘤深度学习分割方法的未来研究趋势进行了展望。 相似文献
11.
目前各类医学影像数据积累迅速,给利用传统影像分析方法实现疾病诊断的医生带来了巨大挑战;计算机视觉领域的深度学习方法日渐成熟,为实现医学影像的自动分析及辅助医生实现疾病的高精度智能诊断提供了新的契机。文中综述了深度学习方法在医学影像领域的最新研究进展。首先,介绍了深度学习方法以及该类方法在医学影像领域的应用情况;然后,从应用深度学习主要研究的几大病症来分析具体的研究进展;最后,总结研究动向,预测研究趋势,并提出深度学习在医学影像研究中可能存在的问题以及建议。 相似文献
12.
Hyperspectral image super-resolution, which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation, aims to improve the spatial resolution of the hyperspectral image, which is beneficial for subsequent applications. The development of deep learning has promoted significant progress in hyperspectral image super-resolution, and the powerful expression capabilities of deep neural networks make the predicted results more reliable. Recently, several latest deep learning technologies have made the hyperspectral image super-resolution method explode. However, a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent. To this end, in this survey, we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information. Then, we review the learning-based methods in three categories, including single hyperspectral image super-resolution, panchromatic-based hyperspectral image super-resolution, and multispectral-based hyperspectral image super-resolution. Subsequently, we summarize the commonly used hyperspectral dataset, and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively. Moreover, we briefly introduce several typical applications of hyperspectral image super-resolution, including ground object classification, urban change detection, and ecosystem monitoring. Finally, we provide the conclusion and challenges in existing learning-based methods, looking forward to potential future research directions. 相似文献
13.
双目立体匹配是计算机视觉领域的经典问题,在自动驾驶、遥感、机器人感知等诸多任务中得到广泛应用。双目立体匹配的主要目标是寻找双目图像对中同名点的对应关系,并利用三角测量原理恢复图像深度信息。近年来,基于深度学习的立体匹配方法在匹配精度和匹配效率上均取得了远超传统方法的性能表现。将现有基于深度学习的立体匹配方法分为非端到端方法和端到端方法。基于深度学习的非端到端方法利用深度神经网络取代传统立体匹配方法中的某一步骤,根据被取代步骤的不同,该类方法被分为基于代价计算网络、基于代价聚合网络和基于视差优化网络的3类方法。基于深度学习的端到端方法根据代价体维度的不同可分为基于3D代价体和基于4D代价体的方法。从匹配精度、时间复杂度、应用场景等多个角度对非端到端和端到端方法中的代表性成果进行分析,并归纳各类方法的优点以及存在的局限性。在此基础上,总结基于深度学习的立体匹配方法当前面临的主要挑战并展望该领域未来的研究方向。 相似文献
14.
视频超分辨率是根据给定的低分辨率视频序列恢复其对应的高分辨率视频帧的过程.近年来,VSR在深度学习的驱动下取得了重大突破.为了进一步促进VSR的发展,文中对基于深度学习的VSR算法进行了归类、分析和比较.首先,根据网络结构将现有方法分为两大类,即基于迭代网络的VSR和基于递归网络的VSR,并对比分析了不同网络模型的优缺... 相似文献
15.
图像风格迁移是一种用不同风格渲染图像语义内容的图像处理方法。随着深度学习的兴起,图像风格迁移获得了进一步的发展,并取得了一系列突破性的研究成果。其出色的风格迁移能力引起了学术界和工业界的广泛关注,具有重要的研究价值。为推进基于深度学习的图像风格迁移的技术研究,本文对目前的主要方法和代表性工作进行了归纳与探讨。首先回顾了非参数的图像风格迁移,详细介绍了目前主要的基于深度学习的图像风格迁移的基本原理和方法,分析了图像风格迁移在相关领域中的应用前景,最后总结了基于深度学习的图像风格迁移目前存在的问题与未来的研究方向。 相似文献
16.
视觉跟踪是计算机视觉的重要研究领域之一。传统的视觉跟踪算法难以很好地解决复杂背景中的跟踪问题,如光线变化、目标发生较大的尺寸和姿态变化或目标被遮挡等。而深度学习的引入为视觉跟踪研究开辟了新的途径。但目前国内外基于深度学习的视觉跟踪研究文献相对较少,为 吸引更多视觉跟踪领域研究者对深度学习进行探索和讨论,并推动视觉跟踪算法的研究,简要介绍了视觉跟踪和深度学习的研究现状,重点分析了基于深度学习的视觉跟踪算法的相关文献,讨论了各算法的优缺点,最后提出了进一步研究的方向以及对基于深度学习的视觉跟踪算法的展望。 相似文献
17.
目标检测是遥感图像信息提取领域中的研究热点之一,具有广泛的应用前景。近些年来,深度学习在计算机视觉领域的发展为海量遥感图像信息提取提供了强大的技术支撑,使得遥感图像目标检测的精确度和效率均得到了很大提升。然而,由于遥感图像目标具有多尺度、多种旋转角度、场景复杂等特点,在高质量标记样本有限的情况下,深度学习在遥感图像目标检测应用中仍面临巨大挑战。从尺度不变性、旋转不变性、复杂背景干扰、样本量少和多波段数据检测5个角度出发,总结了近几年基于深度学习的遥感图像目标检测方法。此外,对典型遥感图像目标的检测难点和方法进行分析和总结,并对公开的遥感图像目标检测数据集进行概述。最后阐述了遥感图像目标检测研究的未来趋势。 相似文献
18.
新型冠状病毒肺炎(COVID-19)具有高传染性和高致病性,严重威胁人民群众的生命安全和身体健康,快速准确地检测和诊断COVID-19对于疫情控制至关重要.目前COVID-19检测诊断方法主要包括核酸检测和基于医学影像的人工诊断,但是核酸检测耗时较长并且需要专用的测试盒,而基于医学影像的人工诊断过于依赖专业知识,分析耗... 相似文献
19.
随着网络终端的不断普及与互联网应用的快速发展,当今网络不仅要应对日益增长的传输流量,也要满足用户多样化的需求指标。云计算在诸如服务延迟与传输开销等方面难以适应趋势,边缘计算(Edge Computing)则将运算资源从云下移到了网络边缘,并通过就近处理数据的方式提升性能。作为人工智能的主要代表之一,深度学习一方面可以被集成到边缘计算的框架中以构建智能边缘,另一方面也能以服务的形式部署在边缘上从而实现边缘智能。本文从边缘计算与深度学习融合的趋势出发,介绍边缘智能与智能边缘的概念与应用场景,并说明典型的使能技术及其相互联系。 相似文献
|