共查询到17条相似文献,搜索用时 62 毫秒
1.
从过完备字典中得到图像的最稀疏表示是一个NP难问题,即使是次优的匹配追踪也相当复杂.针对Gabor多成份字典,提出基于多种群离散差分进化的图像稀疏分解算法.该算法采用3个子种群在不同成份子字典中搜索最佳匹配原子,父代通过多种变异算子生成多个子代,保持群体多样性,同时引入相关系数避免残差更新时多原子匹配重叠的问题.实验表明相比于快速匹配追踪算法,在稀疏逼近性能相当的情况下,文中算法的稀疏分解速度更快;与其他基于进化算法的稀疏分解方法相比,文中算法的稀疏逼近性能更优.最后的结果分析验证文中算法参数设置的合理性. 相似文献
2.
为了更好地提高并行差分进化算法的求解精度和计算效率,实现适用于解决多种优化问题的鲁棒性算法,提出了一种多种群多策略的并行差分进化算法。该算法将种群划分为多个子种群,不同的子种群分别采用不同的差分进化策略。多个子种群各自独立进化,互不干扰,每隔一定代数才进行种群间的通信交流。通过利用多种群实现多种优化策略,并采用并行方式,使得算法可以采用不同的优化策略进行搜索,更加节省计算时间。数值实验结果表明,该算法在求解不同类型的优化问题时都具有良好的计算能力和效率。 相似文献
3.
针对目前差分进化与局部搜索相结合仅局限于基于交叉的局部搜索的方法,提出了一种基于最佳个体局部搜索策略的差分进化算法(LSDE),并引入正态分布算子自动调整搜索步长和时变差分进化因子调整DE的两个参数。实验结果表明:除一个函数外,LSDE的寻优效果比DE和基于混沌搜索的微分进化算法(CDE)都要好,LSDE的收敛速度比DE快。 相似文献
4.
针对传统差分进化算法在进化后期容易出现早熟现象的问题,提出一种组合差分进化(Combined Differential Evolution,CDE)算法。该算法将多个变异策略组合,实现优势互补,并利用柯西分布适应性调整缩放因子,在维持种群多样性的同时加快收敛速度。为测试算法性能,利用12个基准测试函数将本文算法与传统差分进化算法比较。结果表明,本文算法具有较强的寻优能力。 相似文献
5.
6.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。 相似文献
7.
差分进化是一种有效的优化技术,已成功用于多目标优化问题。但也存在Pareto最优集合的收敛慢和多样性差等问题。针对上述不足,本文提出了一种基于分解和多策略变异的多目标差分进化算法(MODE/DMSM)。该算法利用基于分解的方法将多目标优化问题分解为多个单目标优化问题;通过高效的非支配排序方法选择具有良好收敛性和多样性的解来指导差分进化过程;采用了多策略变异方法来平衡进化过程中收敛性和多样性。在ZDT和DTLZ的10个测试函数上的仿真结果表明,本文算法在Parato最优集合的收敛性和多样性优于其他六种代表性多目标优化算法。 相似文献
8.
标准差分进化(DE)算法在高维多峰等复杂函数优化时易出现早熟现象,并且算法后期收敛速度较慢。为此,研究2种标准差分进化算法的变异策略(DE/rand/1和DE/best/1),并将其进行串行组合,提出一种多变异策略的差分进化算法(MDE)。在4个Benchmark函数上的测试结果表明,在多变异策略下,通过对MDE算法控制参数的调整能有效拓展和平衡改进后算法的全局与局部搜索能力,其所得最优解的精度、算法的收敛速度都较标准差分进化算法有明显优势,能较好地解决电力负载分配问题。 相似文献
9.
针对差分进化算法(DE)存在的早熟收敛和搜索停滞的问题,提出了多策略协方差矩阵学习的差分进化算法.通过协方差矩阵建立特征坐标系,通过在特征坐标系中执行变异和交叉操作,来充分利用当前种群的分布信息以及各变量之间的关系,保证种群能朝着全局最优解的方向进化;根据历史进化信息来选择变异策略的方式使得个体能选择当前最合适的变异策... 相似文献
10.
11.
在基于分解技术的多目标进化算法的框架中,引入一种动态多策略差分进化模型。该模型在分析不同差分进化策略的特点基础上,选择了三种差分进化策略,并对每种策略分配一子种群。在进化过程中,依据每种策略对邻域更新的贡献度,动态的调整其子种群的大小。对比分析采用不同差分进化算法的性能,结果表明运用多个策略之间相互协同进化,有利于提高算法性能。将新算法同NSG-II和MOEA/D算法在LZ09系列基准函数上进行性能对比,实验结果显示该算法的收敛性和多样性均优于对比算法。将新应用于I型梁多目标优化设计问题中,获得的Pareto前沿均匀,且解集域较宽广,对比分析表明算法的工程实用性。 相似文献
12.
为了改善基本差分进化算法在求解复杂优化问题时易出现早熟收敛、求解精度低以及进化后期收敛速度慢等缺陷,结合引力搜索算法的优点,提出一种基于阈值统计学习思想的混合差分进化引力搜索算法.该算法通过阈值统计学习的方式,充分利用差分进化算法的全局优化能力与引力搜索算法在进化后期的种群开发能力,在进化过程中根据2种策略在先前学习代数的成功率自适应选择较优策略生成下一代群体,保证种群在解空间中的探索与开发能力之间的平衡,以提高算法的全局寻优能力.对几个经典复杂测试函数的仿真结果表明:改进算法求解精度高、收敛速度快、鲁棒性强、能够有效避免早熟收敛问题. 相似文献
13.
刺激序列的性质直接影响高刺激率听觉诱发电位(Auditory evoked potentials,AEP)去卷积的性能,自动生成满足需求的刺激序列可以为高刺激率AEP的基础和应用研究带来极大便利.以刺激序列的抖动量为优化变量利用差分进化(Differential evolution,DE)算法定义了约束条件下的目标函数.根据抖动量的变化范围,改进了DE搜索的变异算子实现搜索空间动态缩减.该方法可以方便地生成各种参数(包括刺激率、频带范围、扫程长度和采样频率)的低抖动率刺激序列.通过实测脑电信号合成的数据检验,本方法得到的各种刺激序列都取得了较好的效果. 相似文献
14.
多策略协同进化粒子群优化算法 总被引:1,自引:0,他引:1
为了提高粒子群优化(PSO)算法的优化性能, 提出了一种多策略协同进化PSO(MSCPSO)算法。该方法引入了多策略进化模式和多子群协同进化机制, 将整个种群划分为多个子群, 每个子群中的粒子按照不同的进化策略产生新的粒子。子群周期性地更新共享信息, 以加快算法的收敛速度。通过六个基准函数实验, 仿真结果表明, 新算法在计算精度和收敛速度方面均优于其他七种PSO算法。 相似文献
15.
为提高差分进化算法的局部搜索能力和避开罚函数方法中罚参数选择问题,提出一种混沌局部搜索策略的差分进化算法(CLSDE)用于解决非线性混合整数规划问题.CLSDE中,只对目标函数中的变量进行编码,约束条件函数中的变量随机产生,每代进化完毕后,对最优个体进行混沌局部搜索.6个基本的测试函数实验结果证明CLSDE比MIHDE具有较好的寻优能力. 相似文献
16.
差分进化(differential evolution, DE)算法简单高效,但其控制参数和差分变异策略对待解的优化问题较为敏感,对问题的依赖性较强.为克服这一缺陷,提出了一种新的基于三角的骨架差分进化算法(bare-bones differential evolution algorithm based on trigonometry, tBBDE),并使用随机泛函理论分析了算法的收敛性.算法采用了三角高斯变异策略以及三元交叉和交叉概率自适应策略对个体进行更新,并在收敛停滞时进行种群扰动,算法不仅继承了骨架算法无参数的优点,而且还很好地保留了DE算法基于随机个体差异进行的特性.通过对包括单峰函数、多峰函数、偏移函数和高维函数的26个基准测试函数的仿真实验和分析,验证了新算法的有效性和可靠性,经与多种同类的骨架算法以及知名的DE算法在统计学上的分析比较,证明了该算法是一种具有竞争力的新算法. 相似文献