首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
表面修饰活性炭的电容器电极   总被引:9,自引:1,他引:9  
李仁贵  苗小丽  邓正华 《电源技术》2003,27(3):308-310,332
研究了聚苯胺修饰活性炭作为双电层超级电容器电极的电化学行为。利用苯胺在活性炭(AC)表面的吸附在位聚合所形成的聚苯胺(PAn)修饰层提高活性炭的电导率,改进活性炭的孔结构和孔径分布。还可以利用PAn自身的储能特性,提高双电层超级电容器(DLSCs)电极储能能力。经PAn表面修饰的活性炭电导率提高至7.6×10-2S·cm-1;比表面积由1045m2·g-1下降至729.3m2·g-1,但中孔分布比率增大,孔径分布更加平均,经充放电性能测试,放电比容量由31F·g-1提高至43F·g-1。  相似文献   

2.
LiCoO2/AC复合电极作为超级电容器的电极材料   总被引:2,自引:0,他引:2  
为提高活性炭电极的容量,对活性炭进行掺杂LiCoO2处理,由此制备了复合电极。采用循环伏安、恒流充放电、循环寿命试验、漏电流性能测试等方法对掺杂LiCoO2的复合电极/活性炭混合电容器的性能进行了测试,结果表明掺杂LiCoO2后复合电极/活性炭混合电容器的性能大大提高,当复合电极中LiCoO2的质量分数为70%时,混合电容器的比容量达到最大值,在1.0mA/cm2时比容量达39.55F/g,比未掺杂的活性炭电容器提高50.7%,充放电效率有所提高,且混合电容器的电阻和漏电流较小(8.7mA),经1500次循环后电容量仍保持在83%以上,仍远高于活性炭电容器。  相似文献   

3.
张治安  赖延清  李劼  刘业翔 《电池》2008,38(2):92-95
以高性能活性炭为电极材料,采用锂离子电池和铝电解电容器的制作工艺,制备出尺寸为Φ12 mm×20 mm的卷绕型超级电容器.通过BET比表面积、扫描电镜、激光粒度和振实密度对活性炭进行了分析;通过恒流充放电、循环伏安和交流阻抗等方法,对超级电容器的充放电特性、功率特性、电容量、内阻、漏电流和循环寿命等进行了研究.活性炭的比表面积为1 770 m2/g,总孔容为0.831 6 ml/g,平均孔径为1.880 nm,平均粒径为5.19 μm,振实密度为0.41g/cm3.制备的超级电容器为2.5 V/6.0 F,直流内阻为150 mΩ,交流内阻为58 mΩ,功率特性和循环性能良好.  相似文献   

4.
用乙烯基三甲氧基硅烷(VTMOS)对活性炭进行表面改性,并制成双电极扣式超级电容器,电解液为1 mol/L Na2SO4.活性炭表面改性后,亲水官能团和比电容增加,扫描速度为I mV/s时的比电容为100 F/g.活性炭比电容的增加与VTMOS的浓度有关,但VTMOS浓度超过0.75%,则粘结性过大,会堵塞活性炭表面的部分孔,降低超级电容器的性能.  相似文献   

5.
廉价模板法制备介孔MnO2的电化学电容性质   总被引:2,自引:2,他引:0  
张莹  刘开宇  张小兰  张伟 《电池工业》2009,14(1):26-30,37
以国产嵌段共聚物P123为模板剂制备了介孔氧化硅模板KIT-6,利用“反相复制法”制备出具有介孔结构的二氧化锰电极材料。BET测试结果表明,所制备KIT-6和二氧化锰的BET比表面积分别为821.7m^2/g和137m^2/g,孔径分布分别集中在2.67nm和3.67nm,其孔容分别为0.52cm^3/g和0.39cm^3/g。循环伏安,交流阻抗以及恒电流充放电测试表明用所制介孔二氧化锰制备的电极有很好的电化学电容性能,首次放电容量可达295F/g,远高于直接分解Mn(NO3):所制得的MnO2,并且其复平面图表现出典型的电容特征。因此,采用该法制备的这种介孔结构的MnO2能够用来制作电化学电容器电板,并且保持较高的比电容量和良好的电容性能。  相似文献   

6.
利用金相显微镜、扫描电镜、接触角测试、恒流充放电和交流阻抗法研究了聚丙烯酸钠(PAANa)作为分散剂对活性炭电极超级电容器性能的影响,结果表明:0.3%PAANa的分散性最好,能有效地阻止活性炭颗粒的团聚,使电极表面润湿性增加,正负极比电容分别从249.63 F/g和310.55 F/g提高到384.11 F/g和394.41 F/g.  相似文献   

7.
采用化学沉淀法制备MnO2并对普通活性炭进行掺杂.通过循环伏安、交流阻抗、漏电流和恒流充放电测试MnO2/C样品电极的电化学性能.测试结果表明:掺杂量为20%(质量分数)时样品的电容特性最好,其放电比容量为255.5 F/g,比掺杂前提高了49.3%;掺杂后样品的等效串联电阻(RESR)和漏电流分别下降了29.8%和6...  相似文献   

8.
在70℃下用95 g/L(NH4)2S2O8+0.3 g/L OP-10+3%H2SO4+15 g/L Ni2SO4的溶液对镍箔集流体进行化学刻蚀,研究了化学刻蚀对电化学双电层电容器(EDLC)电化学性能的影响。化学刻蚀提高了镍箔集流体的表面粗糙度,与未刻蚀时相比,电极的等效串联内阻由2.11Ω降至0.88Ω。以0.2 A/g的电流在0.05~1.00 V循环,活性炭的单极比电容为163.0 F/g,比未刻蚀时提高50.9%,循环200次的电容保持率为91.3%;当电流增加至6.0 A/g时,比电容为127.8 F/g。  相似文献   

9.
活性炭纤维(activated carbon fiber,ACF)具有很高的比表面积和良好的孔结构,孔径分布较窄。为进一步提高活性碳纤维的脱硝性能,并揭示脱硝机制,采用H2O2,KMnO4/NaOH,NaClO/KOH对ACF进行改性处理,用于燃煤污染物NO的脱除。经过改性处理后,ACF的比表面积和孔容都有不同程度的下降,平均孔径有一定的增大。经X射线光电子能谱法分析表面官能团发现,经过改性处理后ACF表面各类含氧官能团有一定的增加。实验分析了改性ACF对NO的脱除机制,认为脱除机制是由以物理吸附为主的初期阶段和以化学吸附氧化为主的后期阶段构成,且化学吸附阶段,ACF表面化学官能团的催化氧化作用使NO氧化为中间产物NO2,提高了NO脱除效果。结果表明,用摩尔浓度比为0.03 0.1的KMnO4/NaOH对活性炭进行氧化改性可以获得最佳的NO脱除效果。  相似文献   

10.
改性活性炭对模拟燃煤烟气中汞吸附的实验研究   总被引:12,自引:0,他引:12  
为了获得消耗量小、性能高效的燃煤烟气脱汞吸附剂,采用活性MnO2浸渍、FeCl3浸渍和不同温度下渗硫等方法,对活性炭进行了改性,制得一系列改性活性炭吸附剂。采用固定床吸附的方式,对吸附剂在不同条件下的吸附效果进行了测试,筛选出3种高效、廉价的吸附剂,分别为活性MnO2浸渍活性炭、FeCl3浸渍活性炭和600℃渗硫活性炭。和原活性炭吸附剂相比,改性活性炭吸附剂对汞蒸气的吸附能力有较大提高,有效吸附时间大大增加,在有效吸附时间内,穿透率大大降低。改性后的活性炭吸附能力大大提高的原因在于,其吸附过程中,除了物理吸附,还发生了化学吸附。  相似文献   

11.
以间苯二酚(R)、甲醛(F)为原料,盐酸作催化剂,通过添加嵌段共聚物F127作致孔剂,利用溶液协同自组装和炭化处理制备多孔炭材料。采用扫描电镜、透射电镜和N2吸附分析不同F127加入量制得的多孔炭材料的形貌和孔隙结构,并利用直流充放电、交流阻抗技术和循环伏安法测定以上述多孔炭材料为电极的双电层电容器(EDLC)的电化学性能。结果表明:酸催化下的酚醛树脂基体网络结构在炭化过程中较好地保留了F127形成的微相结构,不同F127加入量制得的多孔炭材料比表面积在640~700 m2/g。F127/R为1.3时制得的多孔炭材料比表面积为701.2 m2/g,孔容为0.54cm3/g,其中中孔孔容0.362 cm3/g,中孔率达67.04%;在30%KOH电解质溶液中低电流密度(1 mA/cm2)充放电时的比电容为165 F/g,电流密度增大20倍,容量保持率为95%,经过5 000次循环,容量保持率达94%以上,具有良好的大电流充放电性能和循环性能。  相似文献   

12.
采用真空技术把硫酸电解质溶液引入大比表面积BP2000碳粉的内孔,增加碳材料内比表面积的利用率。采用循环伏安、恒电流充放电和交流阻抗实验对真空处理前后的BP2000碳粉进行比较。实验结果表明,真空处理的最佳时间为30 min;真空处理后BP2000碳粉的比容量为260.1 F/g,比未经过真空处理BP2000碳粉提高约200%;组装电容器的比电容为84.01 F/g,增加了85.17%;真空处理后电容器循环充放电1 000次比容量衰减34.9%,真空处理前衰减73.1%。这表明真空法制备碳电极材料具有较好的可逆性和电容特性。  相似文献   

13.
苎麻基活性炭纤维超级电容器材料的制备   总被引:3,自引:0,他引:3  
以天然植物纤维苎麻为原料.采用ZnCl_2化学活化法,制备不同活化温度下的活性炭纤维,并组装成超级电容器,通过低温氮气吸附测定了活性炭纤维的BET比表面积和孔结构,发现比表面积随活化温度的升高而减小.电化学测试结果表明经过650℃活化的活性炭纤维超级电容器在50 mA/g恒流放电时比电容达253 F/g,并且具有较低的内阻和较好的功率特性以及较长的循环寿命.  相似文献   

14.
郭春雨  王成扬  时志强 《电源技术》2007,31(3):179-182,190
利用KOH化学活化方法制备活性中间相炭微球(MCMBs),通过改变活化剂比例、活化温度及活化停留时间,考察活化条件对活性炭微球吸附性能和孔结构的影响,发现活性炭微球孔结构的变化与活化剂添加量之间存在良好的相关性;未经过炭化处理的中间相炭微球具有独特的各向异性结构,其碳层取向性强,活化产物对小分子(如碘分子)吸附质量具有良好的吸附性能.最大值可达到2 383 mg/g;以活性中间相炭微球为电极材料制备的水系双电层电容器循环性能良好,最大质量比电容可达271 F/g.  相似文献   

15.
以葛根为原料,通过K2CO3/KOH混合碱活化方法制备了高比表面积电极材料活性炭,采用氮气吸-脱附、X射线衍射光谱法(XRD)、恒流充放电以及循环伏安法考察活性炭样品的表面性质、孔结构以及电化学性能,进一步考察了碱活化浓度、活化温度对活性炭的比表面积、孔结构和电化学性能影响。结果表明:活性炭的最佳碱炭比为3∶1,活化温度为800℃,比表面积最高达2700 m2/g,在6 mol/L的KOH电解液中,超级电容器法拉第比电容为325 F/g,具有很好的电化学性能。  相似文献   

16.
聚苯胺/活性炭复合材料的制备及电化学性质   总被引:1,自引:0,他引:1  
采用溶液聚合原位复合法制备出不同配比的聚苯胺/活性炭复合材料,在分别用扫描电镜(SEM)、红外光谱法(IR)、热重分析法(TG)和电阻率测试研究复合材料的形态、表面官能团、热性能和电导性能的基础上,使用恒流充放电和循环伏安(CV)技术研究了聚苯胺/活性炭复合材料作为双电层电容器电极时的电化学性质。实验结果表明:复合材料呈现较高的热稳定性,当炭含量达到20%时复合材料的导电性最好;50%活性炭含量的电极比电容高达400F/g;电极反应可逆性良好。  相似文献   

17.
付兴平  陈培珍  林维晟 《电源技术》2017,(11):1608-1610,1673
利用纳米羟基磷灰石(HAP)为模板,麦芽糖(MO)为碳源,通过固化、炭化等过程,制备有序多孔炭材料(HAP-C)。采用扫描电镜(SEM)、N2吸/脱附以及电化学分析方法等对HAP-C进行物理表征和电化学性能分析。结果显示,HAP/MO的质量比对HAP-C的比表面积、孔结构以及电化学性能有着重要影响。制备的多孔炭呈海绵骨架结构,具有较高的比表面积(1 073.5 m2/g)和大的孔容(3.28 cm3/g)。电化学测试显示,当HAP/MO的质量比为1∶2(HAP-C-1∶2)时,具有较高的质量比电容,在扫描速度为5 m V/s时,质量比电容达198 F/g;倍率性能测试显示,当电流密度增大25倍时,质量比电容保持率为58.0%,显示出良好的倍率性能。  相似文献   

18.
超级电容器用复合炭极板电极的电化学性能   总被引:9,自引:0,他引:9  
用高比表面积活性炭作为原料,酚醛树脂为粘结剂,在高温下粘结成型制备系列超级电容器用固体活性炭极板。采用直流恒流循环法和低温N2吸附对超级电容器电极进行充放电和孔结构分布测试,考察其电化学性能和结构的关系。实验发现,在不同组成的成型活性炭电极中,微孔活性炭含量大,则比电容高,炭化时温度高于800 ℃复合活性炭电极比电容下降。成型活性炭炭化后比表面积降低,微孔孔结构分布变宽,孔容在2~3 nm左右的分布明显加宽。  相似文献   

19.
以柠檬酸镁/沥青混合物为前驱体,通过模板炭化法制备介孔炭材料。通过调节柠檬酸镁与沥青的比例制备出不同孔径结构的炭材料,并以其作为电极材料,以1.7 mol/L 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐/碳酸丙烯酯(Emim-TFSI/PC)电解液组装双电层电容器。通过循环伏安、恒流充放电、交流阻抗测试其在不同电压下的电化学性能。实验表明,柠檬酸镁/沥青比例为6∶4时,制备出的介孔炭材料的电化学性能表现优异,扫描电压区间为0~3.5 V时,仍表现为良好的双电层电容性能,充放电电压为3.2 V时,质量比电容达100 F/g。  相似文献   

20.
通过液相共沉淀、低温水热法等方法制备了核壳、海胆、纳米片团聚微球、纳米棒团聚微球不同形貌的微纳米二氧化锰材料,采用X射线衍射、扫描电子显微镜、比表面积测试、循环伏安法对其晶体结构、表面形貌及电化学性能进行研究。结果表明:结晶度、比表面积对所合成的二氧化锰材料电容性能有一定影响,但并不是造成比电容差异最主要原因,而材料的形貌微结构对电容性能有着更重要的影响。纳米棒团聚微球在~8 nm处具有集中的孔径分布,比表面积达102.3 m2/g,高载量厚电极(10 mg/cm2,100μm)条件下,1 mol/L Na2SO4溶液中纳米棒团聚微球2 mV/s扫速时的放电比电容为143 F/g;200 mV/s时,放电比电容为52 F/g,表现了很好的电容特性,这种微纳米介孔材料是一种极具潜力的电化学电容器电极活性材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号