首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
针对化工串级过程提出了两种新颖的两自由度解耦控制结构。基于鲁棒控制H2最优性能指标设计给定值响应控制器。根据系统运行抗负载干扰要求,在中间级可测量过程的输入和输出端之间设计抑制负载干扰信号的闭环,通过提出期望闭环余灵敏度函数的方法来确定其反馈通道中的扰动观测器,同时给出了该闭环保证鲁棒稳定性的充要条件。最后通过实验显示了该方法相对于其它方法的优越性。  相似文献   

2.
A discrete-time domain two-degree-of-freedom (2DOF) design method is proposed for integrating and unstable processes with time delay. Based on a 2DOF control structure recently developed, a controller is analytically designed in terms of the H2 optimal control performance specification for the set-point tracking, and another controller is derived by proposing the desired closed-loop transfer function for load disturbance rejection. Both controllers can be tuned relatively independent to realize control optimization. Analytical expression of the set-point response is given for quantitatively tuning the single adjustable parameter in the set-point tracking controller. At the meantime, sufficient and necessary conditions for holding robust stability of the closed-loop control system are established for tuning another adjustable parameter in the disturbance rejection controller, along with numerical tuning guidelines. Illustrative examples from the literature are used to demonstrate the effectiveness of the proposed method.  相似文献   

3.
An improved cascade control structure with a modified Smith predictor is proposed for controlling open-loop unstable time delay processes. The proposed structure has three controllers of which one is meant for servo response and the other two are for regulatory responses. An analytical design method is derived for the two disturbance rejection controllers by proposing the desired closed-loop complementary sensitivity functions. These two closed-loop controllers are considered in the form of proportional-integral-derivative (PID) controller cascaded with a second order lead/lag filter. The direct synthesis method is used to design the setpoint tracking controller. By virtue of the enhanced structure, the proposed control scheme decouples the servo response from the regulatory response in case of nominal systems i.e., the setpoint tracking controller and the disturbance rejection controller can be tuned independently. Internal stability of the proposed cascade structure is analyzed. Kharitonov's theorem is used for the robustness analysis. The disturbance rejection capability of the proposed scheme is superior as compared to existing methods. Examples are also included to illustrate the simplicity and usefulness of the proposed method.  相似文献   

4.
Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.  相似文献   

5.
In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme.  相似文献   

6.
This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers.  相似文献   

7.
A systematic data-based design method for tuning proportional–integral–derivative (PID) controllers for disturbance attenuation is proposed. In this method, a set of closed-loop plant data are directly exploited without using a process model. PID controller parameters for a control system that behaves as closely as possible to the reference model for disturbance rejection are derived. Two algorithms are developed to calculate the PID parameters. One algorithm determines the optimal time delay in the reference model by solving an optimization problem, whereas the other algorithm avoids the nonlinear optimization by using a simple approximation for the time delay term, enabling derivation of analytical PID tuning formulas. Because plant data integrals are used in the regression equations for calculating PID parameters, the two proposed algorithms are robust against measurement noises. Moreover, the controller tuning involves an adjustable design parameter that enables the user to achieve a trade-off between performance and robustness. Because of its closed-loop tuning capability, the proposed method can be applied online to improve (retune) existing underperforming controllers for stable, integrating, and unstable plants. Simulation examples covering a wide variety of process dynamics, including two examples related to reactor systems, are presented to demonstrate the effectiveness of the proposed tuning method.  相似文献   

8.
A simple method of designing the controllers for a modified form of Smith predictor is proposed for integrating and double integrating processes with time delay. The modified Smith predictor has two controllers, namely, a set point tracking controller and a load disturbance rejection controller for obtaining good set point tracking and load disturbance rejection, respectively. The set point tracking controller is designed using the classical direct synthesis method based on the process model without considering the time delay. The disturbance rejection controller is considered as a proportional-derivative (PD) controller and is designed using optimal gain and phase margin approaches. Set point weighting is considered for reducing undesirable overshoots and settling times in the modified Smith predictor. Guidelines are provided for selection of the desired closed loop tuning parameter in the direct synthesis method and the set point weighting parameter. The method gives significant load disturbance rejection performances. Illustrative examples are considered to show the performances of the proposed method. A significant improvement in control performance is obtained when compared to recently reported methods.  相似文献   

9.
The paper considers the tracking problem for a class of uncertain linear time invariant (LTI) systems with both uncertain parameters and external disturbances. The active disturbance rejection tracking controller is designed and the resulting closed-loop system׳s characteristics are comprehensively studied. In the time-domain, it is proven that the output of closed-loop system can approach its ideal trajectory in the transient process against different kinds of uncertainties by tuning the bandwidth of extended state observer (ESO). In the frequency-domain, different kinds of parameters׳ influences on the phase margin and the crossover frequency of the resulting control system are illuminated. Finally, the effectiveness and robustness of the controller are verified through the actuator position control system with uncertain parameters and load disturbances in the simulations.  相似文献   

10.
Dong L  Zhang Y  Gao Z 《ISA transactions》2012,51(3):410-419
A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis.  相似文献   

11.
《ISA transactions》2014,53(6):1865-1872
This paper proposes a dead-time compensation structure for processes with multiple dead times. The controller is based on the filtered Smith predictor (FSP) dead-time compensator structure and it is able to control stable, integrating, and unstable processes with multiple input/output dead times. An equivalent model of the process is first computed in order to define the predictor structure. Using this equivalent model, the primary controller and the predictor filter are tuned to obtain an internally stable closed-loop system which also attempts some closed-loop specifications in terms of set-point tracking, disturbance rejection, and robustness. Some simulation case studies are used to illustrate the good properties of the proposed approach.  相似文献   

12.
Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.  相似文献   

13.
The magnitude optimum (MO) method provides a relatively fast and non-oscillatory closed-loop tracking response for a large class of process models frequently encountered in the process and chemical industries. However, the deficiency of the method is poor disturbance rejection performance of some processes. In this paper, disturbance rejection performance of the PID controller is improved by applying the“disturbance rejection magnitude optimum” (DRMO) optimisation method, while the tracking performance has been improved by a set-point weighting and set-point filtering PID controller structure. The DRMO tuning method requires numerical optimisation for the calculation of PID controller parameters. The method was applied to two different 2-degrees-of-freedom PID controllers and has been tested on several different representatives of process models and one laboratory set-up. A comparison with some other tuning methods has shown that the proposed tuning method, with a set-point filtering PID controller, is quite efficient in improving disturbance rejection performance, while retaining tracking performance comparable with the original MO method.  相似文献   

14.
Automatic generation control (AGC) executes a vital role to supply quality power in an interconnected power system. To cultivate good quality of power supply via preserving area frequency and tie-line power oscillations following consumer's load demand disturbances, the controller designed for AGC of power system should display excellent disturbance rejection expertise. Hence, in this paper, a maiden attempt is made to propose a fuzzy aided integer order proportional integral derivative with filter-fractional order integral (FPIDN-FOI) controller for AGC of multi-area power systems. A more recent intelligent optimization technique termed as imperialist competitive algorithm (ICA) is fruitfully employed for concurrent tuning of various parameters of the proposed controller. It is observed from the simulation results that the proposed FPIDN-FOI controller outperforms the various existing control strategies and PID/PIDN/FPIDN controller designed in the study for five different power system models. Effect of variation in fractional order value of integral on the system performance is analyzed. A sensitivity analysis is conducted to test the robustness of the designed controller under variations in the system parameters, load demands and existence of the system nonlinearities. It is perceived that the proposed controller is robust and executes adequately under variations in system parameters, random load disturbance patterns and nonlinearities.  相似文献   

15.
永磁同步直线电机由于反电势和逆变器频繁切换导致电流谐波分量较大,同时参数时变以及负载突变等扰动严重影响伺服系统的控制精度。本文采用一种基于降阶状态观测器的双环自抗扰伺服控制算法,以降低控制系统的谐波抑制从而提高控制精度。首先,构造了位置速度环级联的二阶自抗扰控制器。运用极点配置法对三阶线性状态观测器进行降阶,减小了相位滞后的影响,提高了伺服系统的控制精度;其次,电流环采用一阶非线性自抗扰控制器,消除了积分饱和的影响,降低了三相电流的谐波含量。最后,与基于自抗扰控制的其他优化算法进行对比,实验表明在多工况下降阶双环自抗扰控制的总谐波失真不超过2.13%,推力波动可减小至1.49%,稳态误差不大于15μm。  相似文献   

16.
This paper addresses the design of attitude and airspeed controllers for a fixed wing unmanned aerial vehicle. An adaptive second order sliding mode control is proposed for improving performance under different operating conditions and is robust in presence of external disturbances. Moreover, this control does not require the knowledge of disturbance bounds and avoids overestimation of the control gains. Furthermore, in order to implement this controller, an extended observer is designed to estimate unmeasurable states as well as external disturbances. Additionally, sufficient conditions are given to guarantee the closed-loop stability of the observer based control. Finally, using a full 6 degree of freedom model, simulation results are obtained where the performance of the proposed method is compared against active disturbance rejection based on sliding mode control.  相似文献   

17.
The magnitude optimum (MO) method provides a relatively fast and nonoscillatory closed-loop tracking response for a large class of process models frequently encountered in the process and chemical industries. However, the deficiency of the method is poor disturbance rejection when controlling low-order processes. In this paper, the MO criterion is modified in order to optimize disturbance rejection performance, while the tracking performance has been improved by an integral set-point filtering PI controller structure. The new tuning rules, referred to as the disturbance rejection magnitude optimum (DRMO) method, were applied to several different two-degrees-of-freedom PI controllers. The DRMO method has also been tested on several different representatives of process models. The results of experiments have shown that the proposed tuning method with the integral set-point filtering PI controller is quite efficient in improving disturbance rejection performance, while retaining tracking performance comparable to the original MO method.  相似文献   

18.
This paper investigates on the high performance torque control of electro-hydraulic load simulator (EHLS). In order to suppress actuator׳s motion disturbance, a nonlinear robust dual-loop control scheme is developed, which consists of a open-loop nonlinear velocity feed-forward compensator and a closed-loop nonlinear deterministic robust torque controller. The main function of the open-loop compensator is to decouple actuator׳s active motion disturbance, whereas the torque loop controller aims at guaranteeing the dynamics performance of tracking torque reference. Besides actuator׳s motion disturbance, both the nonlinearity characteristics and friction problem of the EHLS system are taken into consideration in this paper. The effectiveness of the developed method are verified through comparative co-simulations and experiments.  相似文献   

19.
Zhang B  Yang W  Zong H  Wu Z  Zhang W 《ISA transactions》2011,50(3):454-460
This paper introduces a novel predictive controller for single-input/single-output (SISO) integrating systems, which can be directly applied without pre-stabilizing the process. The control algorithm is designed on the basis of the tested step response model. To produce a bounded system response along the finite predictive horizon, the effect of the integrating mode must be zeroed while unmeasured disturbances exist. Here, a novel predictive feedback error compensation method is proposed to eliminate the permanent offset between the setpoint and the process output while the integrating system is affected by load disturbance. Also, a rotator factor is introduced in the performance index, which is contributed to the improvement robustness of the closed-loop system. Then on the basis of Jury’s dominant coefficient criterion, a robust stability condition of the resulted closed loop system is given. There are only two parameters which need to be tuned for the controller, and each has a clear physical meaning, which is convenient for implementation of the control algorithm. Lastly, simulations are given to illustrate that the proposed algorithm can provide excellent closed loop performance compared with some reported methods.  相似文献   

20.
The paper is concerned with an overall convergent nonlinear model predictive control design for a kind of nonlinear mechatronic drive systems. The proposed nonlinear model predictive control results in the improvement of regulatory capacity for reference tracking and load disturbance rejection. The design of the nonlinear model predictive controller consists of two steps: the first step is to design a linear model predictive controller based on the linear part of the system at each sample instant, then an overall convergent nonlinear part is added to the linear model predictive controller to combine a nonlinear controller using error driven. The structure of the proposed controller is similar to that of classical PI optimal regulator but it also bears a set-point feed forward control loop, thus tracking ability and disturbance rejection are improved. The proposed method is compared with the results from recent literature, where control performance under both model match and mismatch cases are enlightened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号