首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A discrete-time domain two-degree-of-freedom (2DOF) design method is proposed for integrating and unstable processes with time delay. Based on a 2DOF control structure recently developed, a controller is analytically designed in terms of the H2 optimal control performance specification for the set-point tracking, and another controller is derived by proposing the desired closed-loop transfer function for load disturbance rejection. Both controllers can be tuned relatively independent to realize control optimization. Analytical expression of the set-point response is given for quantitatively tuning the single adjustable parameter in the set-point tracking controller. At the meantime, sufficient and necessary conditions for holding robust stability of the closed-loop control system are established for tuning another adjustable parameter in the disturbance rejection controller, along with numerical tuning guidelines. Illustrative examples from the literature are used to demonstrate the effectiveness of the proposed method.  相似文献   

2.
Zhang B  Yang W  Zong H  Wu Z  Zhang W 《ISA transactions》2011,50(3):454-460
This paper introduces a novel predictive controller for single-input/single-output (SISO) integrating systems, which can be directly applied without pre-stabilizing the process. The control algorithm is designed on the basis of the tested step response model. To produce a bounded system response along the finite predictive horizon, the effect of the integrating mode must be zeroed while unmeasured disturbances exist. Here, a novel predictive feedback error compensation method is proposed to eliminate the permanent offset between the setpoint and the process output while the integrating system is affected by load disturbance. Also, a rotator factor is introduced in the performance index, which is contributed to the improvement robustness of the closed-loop system. Then on the basis of Jury’s dominant coefficient criterion, a robust stability condition of the resulted closed loop system is given. There are only two parameters which need to be tuned for the controller, and each has a clear physical meaning, which is convenient for implementation of the control algorithm. Lastly, simulations are given to illustrate that the proposed algorithm can provide excellent closed loop performance compared with some reported methods.  相似文献   

3.
Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method.  相似文献   

4.
针对液压机械传动装置(Hydraulic Mechanical Continuously Variable Transmission, HMCVT)在阶跃负载扰动、变速器输入转速扰动的影响下所引起的输出转速波动问题,以分矩汇速式液压机械传动装置中的泵-马达系统为研究对象,以系统稳速输出为控制目标,提出一种基于扰动补偿的模糊自抗扰控制(Active Disturbance Rejection Control, ADRC)方法。该方法采用模糊控制理论对自抗扰控制中的非线性误差反馈系数进行在线整定,利用扩张状态观测器(Extended State Observer, ESO)对系统总扰动进行实时观测,并通过前馈控制调节电-液比例阀阀芯位移来补偿变量泵斜盘摆角,最终实现HMCVT稳速控制。仿真结果表明,相比于传统PID控制,采用模糊自抗扰控制的液压机械传动装置在外负载和输入转速突变时,变量泵斜盘抖振幅度更小,系统稳速输出响应时间更短,抗扰动能力更强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号