首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A common approach for lower emission of NOx from diesel engines is to use exhaust gas recirculation (EGR) coolers where part of the exhaust gas is returned to the cylinder to reduce the combustion temperature. Nonetheless, the deposition of various species, i.e. soot particles, on surfaces deteriorates the thermal efficiency of EGR coolers. This study investigated the impact of surface treatment on particulate fouling of a rectangular EGR cooler. An experimental setup was assembled through which the uncoated and coated plates were exposed to the flow of exhaust flue gases. The cooler surfaces were coated by ceramic-based materials with resistance to high temperatures by spraying. The results showed that surface modification abated soot deposition to some extent and the deposit layer was easily flaked off with a force of 0.8 N when it was scratched with a nano-intender. Contrariwise, the deposit formed on the uncoated surface did not result in similar propensity and instead it required a larger force of 2.25 N. This implies weaker stickiness of soot deposit on the investigated coatings compared to baseline stainless steel surface. It was also found that the electron donor component of surface energy would determine the tendency of a surface to foul or not.  相似文献   

2.
This study investigates the performance of various types of exhaust gas recirculation (EGR) coolers, that is, smooth tube, corrugated tube, and plate–fin, when subjected to particulate fouling by soot particles. Experiments were carried out for different temperature gradients of 170 and 320°C (thermophoretic) and 0°C (isothermal). Soot particles with an average diameter of 130 nm were produced by a soot generator. Experimental results showed that generally soot deposition under isothermal conditions is negligible compared to thermophoresis for any given cooler geometry, but is not universal. It may become appreciable when complex coolers with extended surfaces, that is, plate–fin type, are used due to impaction and settlement of soot particles onto the extended surfaces, which act as barrier to the flow. Contrariwise, under thermophoretic conditions, the plate–fin cooler performed best, followed by the corrugated tube and smooth tube cooler. Coolers with larger heat transfer surface area are also found to be less sensitive to the loss in effectiveness, but show a higher pressure drop.  相似文献   

3.
This work presents one of the first CFD studies carried out to understand the fouling of exhaust gas recirculator (EGR) cooler surfaces. The deposition of soot particles in wavy-fin EGR coolers is studied by way of simulations carried out in a periodic framework. In the presence of very high temperature gradients, usually prevalent in EGR flows, the particle deposition process is dominated by the thermophoretic force. Calculations are performed for 10 and 100 nm particles at various Reynolds numbers and wall temperature gradients ranging from 1.0 to 9.45 × 106 K/m. It is seen that for the sub-micron particle sizes considered, the deposition process is independent of the particle size. Simulations in the wavy-fin geometry indicate the presence of preferential deposition patterns, corresponding to the regions of higher heat transfer. At lower Reynolds numbers, the amount of deposition increases considerably due to the higher particle residence times. Also, the amount of deposition exhibits a linear relationship with the applied wall temperature gradient, thus confirming the importance of thermophoresis in the soot deposition process.  相似文献   

4.
Transportation is responsible for approximately 20% of global greenhouse gas emissions, such as CO2, NOx, and hydrocarbons that have not been burned completely in the engine. In particular, 55% of globally emitted NOx, which is more harmful to the environment than CO2, is produced by the automotive industry alone. Strict emission standards are now in place that set specific limits to the amount of pollutants that can be released into the environment. The widely used measure to reduce NOx emissions in diesel engines is to return part of the exhaust gas to the intake of the engine. This is usually done through a heat exchanger known as an exhaust gas recirculation (EGR) cooler. However, EGR coolers are subject to severe fouling such that their thermal efficiency can drop by as much as 30% within a very short period of time. More importantly, the deposit layer is a blend of particulate matter and sticky heavy hydrocarbons that are very difficult to remove from the heat exchanger surfaces. The present study addresses this problem and provides a review on required research and development (R&D) activities to mitigate fouling of EGR coolers.  相似文献   

5.
ABSTRACT

In recent years, open-cell metal foam has gained attention for utilization for exhaust gas recirculation coolers due to its large surface area and porous structure. Theoretically, the porous foam structure would have better transfer heat through conduction and convection processes. However, the exhaust gases that enter the cooler would carry particulate matter, which may deposit within the foam structure. The existing fouling studies cannot explain the underlying mechanisms of particulate deposition thoroughly within the foam structure. This study reviews the particulate fouling of heat exchangers, particularly in the exhaust gas recirculation system. Some past approaches to investigate fouling, particle transport, and deposition in the metal foam heat exchangers for many different applications are also included. In addition, this study also includes the challenges that lie ahead in implementing the metal foam heat exchangers in the industries.  相似文献   

6.
为研究废气再循环(EGR)及燃用调合生物柴油(B0,B20)对柴油机排放颗粒物(PM)氧化活性与微观结构的影响,通过一台4缸共轨柴油机进行试验,并采集燃烧颗粒物,使用热重分析仪(TGA)、高倍透射电镜(HRTEM)和拉曼光谱(RS)对颗粒物进行研究.结果表明:燃用同种燃料时,随着EGR率增加,颗粒中干碳烟含量增加,起始...  相似文献   

7.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

8.
DI diesel engines are well established today as the main powertrain solution for trucks and other relevant heavy duty vehicles. At the same time emission legislation (mainly for NOx and particulate matter) becomes stricter, reducing their limit to extremely low values. One efficient method to control NOx in order to achieve future emissions limits is the use of rather high exhaust gas recirculation (EGR) rates accompanied by increased boost pressure to avoid the negative impact on soot emissions. The method is based on the reduction of gas temperature level and O2 availability inside the combustion chamber, but unfortunately it has usually an adverse effect on soot emissions and brake specific fuel consumption (bsfc). The use of high EGR rates creates the need for EGR gas cooling in order to minimize its negative impact on soot emissions especially at high engine load were the EGR flow rate and exhaust temperature are high. For this reason in the present paper it is examined, using a multi-zone combustion model, the effect of cooled EGR gas temperature level for various EGR percentages on performance and emissions of a turbocharged DI heavy duty diesel engine operating at full load. Results reveal that the decrease of EGR gas temperature has a positive effect on bsfc, soot (lower values) while it has only a small positive effect on NO. As revealed, the effect of low EGR temperature is stronger at high EGR rates.  相似文献   

9.
This article addresses the question; why the gas-side temperature affects the rate of particulate fouling of heat exchangers? An experiment was carried out in a gas-cooler of a full-scale biomass gasifier to investigate the influence of the gas-side temperature on the strength, structure and growth rate of particulate fouling layers. It is observed that the particulate fouling rate in the gas cooler decreases with sintering, which is a function of the gas-side temperature. Detailed impaction experiments are carried out to investigate the influence of sintering on the removal of particles from a particulate fouling layer due to an incident particle impact as well as the sticking of an incident particle to a particulate fouling layer. Sintering of a fouling layer lowers significantly the ability of an incident particle to stick to the fouling layer or to remove particles out of the layer. However, particles that are still able to deposit on the sintered fouling layer will not sinter immediately, and can be removed due to the incident particles impact. The removal of newly deposited particles on a fouling layer due to incident particles becomes easier as sintering of the fouling layer takes place. Accordingly, it may be stated that sintering reduces the fouling rate of heat exchangers by lowering the deposition of new particles and increasing the removal rate of newly deposited particles. This explains why the growth rate of particulate fouling layers decreases with the gas-side temperature.  相似文献   

10.
Diesel exhaust particles have a negative impact on both human health and the ecosystem. An adequate understanding of the physical and chemical characteristics of diesel exhaust particles is essential for both minimizing particles formation and optimizing particles oxidation. This paper systematically reviews the physicochemical characteristics of diesel exhaust particles. Firstly, the approaches to studying the characteristics of diesel exhaust particles are described and the main features of particulate matter (PM) such as particle size distributions, microstructure of aggregate particles, nanostructure of primary particle, chemical compositions of diesel particles and oxidation reactivity of diesel particles are discussed in this paper. Then, the effects of operating parameters containing engine speed, engine load, injection pressure, injection timing and exhaust gas recirculation (EGR) on each PM feature are summarized and discussed in detail. Subsequently, the relationships between PM features and its oxidation reactivity are exclusively reviewed. It can be concluded that soot oxidation reactivity is influenced by the combination of multiple properties of the emitted PM. Finally, concluding remarks are presented and further research recommendations are listed.  相似文献   

11.
In a recent paper, we demonstrated that the exhaust gas recirculation (EGR) enhanced the oxidative reactivity of diesel engine soot. In this paper, we show that simulated EGR, via carbon dioxide (CO2) addition to the intake air to an engine at concentrations of 0, 2, 4, and 8 vol.% and to the oxidizer stream of an ethylene diffusion flame at concentrations of 0, 5, and 10 vol.%, affects the reactivity of the soot in the same manner as actual EGR. Motivated by this fact, post-flame ethylene soot was produced from a co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This objective was accomplished by successfully isolating and examining the thermal, dilution, and chemical effects of the CO2 on soot reactivity. These three effects account for 45%, 35%, and 20% of the total reactivity of soot respectively, with the thermal effect being the most important factor governing the soot reactivity. The results showed that all of these effects account for a measurable increase in soot reactivity.  相似文献   

12.
Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, were numerically analysed to evaluate the heat transfer and pressure drop and to suggest the parameter for designing heat regenerator. It takes about 7 h for the steady state in the thermal flow of regenerator, where heat absorption of regenerative particle is concurrent with heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses increase. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. At the same exhaust gases temperature at the regenerator outlet, the regenerator length need to be linearly increased with inlet Reynolds number of exhaust gases. It is confirmed that inlet Reynolds number of exhaust gases should be introduced as a regenerator design parameter. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR.  相似文献   

14.
A kinetic modeling approach is proposed to delve into the nature and chemistry of combustion-produced particles. A sectional method is used for the first time on this purpose. It is based on modeling of gas-to-particle transitions by sections containing 125 lumped species with C numbers ranging from 24 to 4 × 108 and H/C ratio ranging from 0 to 1. This allows not only the mass evolution of particles, but also their hydrogen content to be followed. The model is tested in an atmospheric pressure premixed flat flame of ethylene/oxygen with C/O = 0.8 and cold gas flow velocity of 4 cm/s. Comparison of modeled results with experimental data is satisfying in terms of species concentrations and H/C ratio of the particles. Analysis of model results in comparison with the experimental data has shown that it is possible to distinguish different precursors of particles moving from the exit of the burner into the post-oxidation region of the flame. At particle inception, i.e. just downstream from the flame front, gas-phase PAHs are responsible for particle nucleation and oligomers of aromatic hydrocarbons and small pericondensed hydrocarbons are predominantly present. Then the dehydrogenation process takes place and soot formation starts; in this zone large pericondensed and stacked structures are produced. Further up soot maturation generally linked with dehydrogenation is present, but still a few particles with higher H/C and with low coagulation efficiency are produced and remain present along the flame. The model, in accordance with experimental structural soot analysis, shows that in soot particles condensed structures typical of clusters of large pericondensed hydrocarbons are present whereas high-molecular mass condensed species mainly comprise oligomers of small aromatic compounds of clusters of small pericondensed hydrocarbons.  相似文献   

15.
In this study, small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate the microstructure, spatial structure, and structural rigidity of the particles in the particulate matter (PM) produced at different exhaust gas recirculation (EGR) rates, exhaust compositions and temperatures as well as the size and number of gaps in the aggregates. The results showed that with increasing EGR rate and exhaust temperature, the aggregate size of the PM and the number of primary carbon particles increased significantly, the electronic density difference in the PM decreased gradually, the statistical mean distance between the PM decreased, the size and number of gaps in the aggregates decreased significantly, the spatial structure gradually became tighter, the Young’s moduli of the powders increased gradually, the structural rigidity increased, the liquid bridge force and the van der Waals force increased gradually, the type of cohesive force changed from the liquid bridge force to a combination of the liquid bridge force and the van der Waals force, and the van der Waals force played a more prominent role. In contrast to the particles that formed due to the introduction of exhaust gas, the particles that formed due to the introduction of CO2 exhibited a chain structure, and the cohesive force decreased significantly, which resulted in loose particle packing. The particles that formed due to the introduction of only N2 mainly exhibited a clustered structure, the cohesive force did not change significantly, and the primary carbon particles were tightly packed. The particle gap sizes ranged from 4 to 6 nm, 3 to 4 nm and 11 to 13 nm when exhaust gas, N2 and CO2 were introduced, respectively. The N2 in the exhaust gas was the main factor responsible for the aggregation of particles and the improvement of the structural rigidity, whereas CO2 in the exhaust gas increased the statistical mean distance between the particles and decreased the packing density of the structure and the structural rigidity.  相似文献   

16.
以匹配了可变截面几何增压系统(VGT)的D19高压共轨柴油机为研究机型,采用GT-Power和AVL FIRE构建了一维热力学整机模型和催化型微粒捕集器(CDPF)三维仿真模型,针对3 000r/min、50%负荷工况,研究了喷油策略耦合废气再循环(EGR)对燃烧过程和CDPF再生性能的影响。研究表明:随主喷定时提前,有效燃油消耗率(BSFC)先降后升,排气温度降低,排气流量与氧浓度变化则较小,排气中一氧化氮(NO)增加,CDPF再生速率逐渐降低,颗粒物残余量、压降与CDPF出口端二氧化氮(NO_2)同时增加;随EGR率增大,BSFC和排气温度升高,排气流量、排气氧浓度、排气中NO浓度则同时降低。在主喷定时较晚时,随EGR率增大,CDPF再生速率先升后降,颗粒物残余量先降低后略升高;而在主喷定时较早时,随EGR率的增大,CDPF再生速率降低,颗粒物残余量增多。在主喷定时较晚时,提高喷油压力使BSFC和排气温度明显降低;而在主喷定时较早时,提高喷油压力导致BSFC反而快速增加。此外,随喷油压力提高,排气流量与氧浓度变化较小,排气中NO浓度增加,CDPF再生速率逐渐减小,颗粒物残余量、压降和CDPF出口端NO_2排放同时升高。总体上,相比喷油压力,主喷定时对CDPF再生过程影响更大。  相似文献   

17.
The characteristics of particulate mater size distribution in the exhaust gas of an automotive diesel engine have been studied for a biodiesel blend of 30% rapeseed methyl ester (RME) and 70% ultra low sulphur diesel (ULSD) by volume (B30). The engine, a twin-turbo charged V6 equipped with a common rail fuel injection system, was operated on 16 steady-state points extracted from a corresponding New European Driving Cycle test with no engine system modification and a fast differential mobility spectrometer was used to determine the particulate number concentration and distribution. It is shown that the number-size distribution is dependent on engine operating conditions including the rate of exhaust gas recirculation (EGR). Compared with ULSD, B30 leads to a 41% smaller average size of the particles with EGR but gives rise to a higher number concentration under certain engine operating conditions, with the differences varying between nucleation and accumulation mode. The calculated particle total mass for B30 combustion aerosol is lower than the value with ULSD for all the engine operating conditions tested. The average B30 aerosol was 28% smaller in size on mass basis, compared to ULSD aerosol. For both fuels, the relationship between the particle total number and total mass has been found to be directly correlated and both the number and the mass of particles increase when the mean diameters of particles increase.  相似文献   

18.
With higher rate of depletion of the non-renewable fuels, the quest for an appropriate alternative fuel has gathered great momentum. Though diesel engines are the most trusted power sources in the transportation industry, due to stringent emission norms and rapid depletion of petroleum resources there has been a continuous effort to use alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has its own benefits and limitations in its use as a conventional fuel in automotive engine system.In the present investigation, hydrogen-enriched air is used as intake charge in a diesel engine adopting exhaust gas recirculation (EGR) technique with hydrogen flow rate at 20 l/min. Experiments are conducted in a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine coupled to an electrical generator. Performance parameters such as specific energy consumption, brake thermal efficiency are determined and emissions such as oxides of nitrogen, hydrocarbon, carbon monoxide, particulate matter, smoke and exhaust gas temperature are measured. Usage of hydrogen in dual fuel mode with EGR technique results in lowered smoke level, particulate and NOx emissions.  相似文献   

19.
Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production and is used on most modern high-speed direct injection (HSDI) diesel engines. However EGR has different effects on combustion and emissions production that are difficult to distinguish (increase of intake temperature, delay of rate of heat release (ROHR), decrease of peak heat release, decrease in O2 concentration (and thus of global air/fuel ratio (AFR)) and flame temperature, increase of lift-off length, etc.), and thus the influence of EGR on NOx and particulate matter (PM) emissions is not perfectly understood, especially under high EGR rates. An experimental study has been conducted on a 2.0 l HSDI automotive diesel engine under low-load and part load conditions in order to distinguish and quantify some effects of EGR on combustion and NOx/PM emissions. The increase of inlet temperature with EGR has contrary effects on combustion and emissions, thus sometimes giving opposite tendencies as traditionally observed, as, for example, the reduction of NOx emissions with increased inlet temperature. For a purely diffusion combustion the ROHR is unchanged when the AFR is maintained when changing in-cylinder ambient gas properties (temperature or EGR rate). At low-load conditions, use of high EGR rates at constant boost pressure is a way to drastically reduce NOx and PM emissions but with an increase of brake-specific fuel consumption (BSFC) and other emissions (CO and hydrocarbon), whereas EGR at constant AFR may drastically reduce NOx emissions without important penalty on BSFC and soot emissions but is limited by the turbocharging system.  相似文献   

20.
为研究废气再循环(EGR)对柴油机燃用生物柴油(B0、B20)排放颗粒微观结构及表面官能团的影响,通过一台4缸共轨柴油机进行台架试验.对采集后的颗粒物进行拉曼光谱和红外光谱分析.结果表明:相比B0颗粒,B20颗粒物的拉曼光谱D1峰半高宽略有增加,化学异相性增强,ID1/IG增加,石墨化程度降低,平均微晶尺寸减小;随着EGR率增加,D1峰半高宽减小,颗粒化学异相性逐渐减弱,颗粒石墨化程度增加,当EGR率从0增加至15%和25%时,B0、B20颗粒ID1/IG分别降低3.8%、9.2%和6.6%、8.0%,颗粒初级碳粒子平均微晶尺寸分别增加3.9%、10.1%和7.2%、8.7%;与B0颗粒相比,B20颗粒样品中IC-H/IC=C增加,脂肪族C-H官能团相对含量增加;随着EGR率增加,颗粒样品中IC-H/IC=C降低,脂肪族C-H官能团的相对含量减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号