首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
By adopting a perturbation method and a local thermal nonequilibrium model, nonlinear thermal convection in an anisotropic porous layer saturated by an elasticoviscous fluid is investigated. An elasticoviscous fluid is modeled by a modified Darcy‐Oldroyd‐B model, and the fluid and solid phase temperatures are represented using a two‐field model for the heat transport equation. Anisotropy in permeability and fluid and solid thermal conductivities are considered. A cubic Landau equation is derived separately to study the stability of bifurcating solution of both stationary and oscillatory convection, and the results of linear instability theory are delineated. The boundary between stationary and oscillatory convection is demarcated by identifying codimension‐two points in the viscoelastic parameters plane. It is found that the subcritical instability is not possible, and the linear instability analysis itself completely captures the behavior of the onset of convection. Heat transfer is obtained in terms of Nusselt number, and the effect of governing parameters on the same is discussed. The results of the Maxwell fluid are obtained as a particular case from the present study.  相似文献   

3.
A boundary layer analysis has been presented for the mixed convection of water at 4°C over a vertical plate embedded in a porous medium. The Robin or convective boundary condition at the surface has been considered where the heat lost from the surface is the product of a heat transfer coefficient and the temperature difference between the surface and the free stream. The governing non‐similar boundary layer equations for both the forced and free convection dominated regimes were solved numerically by means of an implicit finite difference method. The friction factor and dimensionless heat transfer rate (Nusselt number) are presented for several values of the dimensionless heat transfer coefficient and buoyancy parameter. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21022  相似文献   

4.
In an anisotropic porous matrix with a Soret coefficient, the onset of double-diffusive convection is investigated analytically using weakly nonlinear analysis. The momentum equation is expressed using a generalized Darcy model with a time derivative term. The Newell–Whitehead–Segel equation is acquired, thereby examining the Eckhaus and zigzag secondary instabilities. Nusselt and Sherwood numbers are used to examine convection onset by quantifying heat and mass movement. Heat and mass transmission dynamics are graphically depicted as a consequence of several parameters. An increase of the positive value of the Soret parameter enhances heat transport, whereas, an increase of the negative value of the Soret parameter reduces it.  相似文献   

5.
The onset of stationary Marangoni instabilities in a horizontal fluid layer with free surface deformation and heated from below with a uniform heat flux is considered theoretically using linear stability theory. The explicit solution is obtained and the influences of temperature-dependent viscosity, surface deformability, gravity waves and heat transfer mechanism at the free surface on the stability thresholds are investigated. Small stabilizing effect is observed in fluids with a small viscosity variation while large viscosity variation strongly destabilizes the fluid layer. The stability thresholds are critically dependent on viscosity variation, surface deformation and heat transfer mechanism.  相似文献   

6.
Stability analysis of thermal convection for a Jeffrey fluid with rotation in an anisotropic porous medium is examined utilizing a modified Jeffrey–Darcy model. The linear stability theory is applied to examine how the Jeffrey parameter, rotation parameter, and anisotropic parameters affect the convective motion. It is observed that the rotation and the anisotropic in the thermal diffusivity act to delay the start of Jeffery fluid convection, while the Jeffery parameter and the anisotropic in the permeability show a dual effect in the presence of rotation. The extent of the convection cell diminishes with rotation and Jeffery parameters, while it augments with the thermal anisotropy parameter. Also, some previous outcomes are regained as special cases of the current analysis.  相似文献   

7.
The steady mixed convection boundary layer flow over a vertical impermeable surface embedded in a porous medium when the viscosity of the fluid varies inversely as a linear function of the temperature is studied. Both cases of assisting and opposing flows are considered. The transformed boundary layer equations are solved numerically by a finite difference method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the mixed convection parameter ε and the variable viscosity parameter θe. It has been found that in the opposing flow case, dual solutions exist and boundary separation occurs.  相似文献   

8.
Linear stability analysis has been applied to examine the stability of convection in a horizontal double-diffusive fluid layer driven by the combined effects of buoyancy and surface tension. Such a convective flow may serve as an idealized model of the horizontal Bridgman process for crystallization or solidification of liquid melts. Results show that salt-finger instability is excited over a wide range of thermal and solutal Grashof numbers. Travelling wave instabilities caused by surface tension effects are excited when the effective Marangoni number becomes large.  相似文献   

9.
A fully developed free convection flow of immiscible fluids in a vertical channel filled with a porous medium is analyzed in the presence of source/sink. The flow is modeled using the Darcy–Brinkman–Forchheimer equation model. The viscous and Darcy dissipation terms are included in the energy equation. The channel walls are maintained at two different constant temperatures. The transport properties of both fluids are assumed to be constant. Continuous conditions for velocity, temperature, shear stress, and heat flux of both fluids at the interface are employed. The resulting coupled nonlinear equations are solved analytically using regular perturbation method and numerically using finite difference method. The velocity and temperature profiles are obtained in terms of porous parameter, Grashof number, viscosity ratio, width ratio, conductivity ratio, and heat generation or heat absorption coefficient. It is found that the presence of porous matrix and heat absorption reduces the flow field. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20340  相似文献   

10.
This paper describes an experimental study on natural convection along a vertical porous surface consisting of a bank of parallel plates with constant gaps. Compared with a smooth surface, the heat transfer for a porous surface with streamwise gaps is somewhat enhanced owing to enthalpy transport due to flow within the gaps and that with spanwise gaps is enhanced due to the leading- and trailing-edge effects of solid-phase micro surfaces. Observations show that no clear transition to turbulent flow occurs at a critical Rayleigh number for a smooth surface and that the boundary layer oscillates with a dominant frequency at higher Rayleigh numbers. The dominant frequency for a porous surface is nearly the same as that for a smooth surface. This fact obviously indicates that the oscillations of natural convection are almost independent of the porous structure of the heating surface and are mainly dependent on the behavior of the outer boundary layer. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(6): 385–397, 1997  相似文献   

11.
This work studies the natural convection boundary layer flow over a truncated cone embedded in a porous medium saturated by a nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A suitable coordinate transformation is performed, and the obtained nonsimilar equations are solved by the cubic spline collocation method. The effect of the Brownian motion parameter and thermophoresis parameter on the temperature, nanoparticle volume fraction and velocity profiles are discussed. The effects of the thermophoresis parameter, Brownian parameter, Lewis number, and buoyancy ratio on the local Nusselt number have been studied. Results show that an increase in the thermophoresis parameter or the Brownian parameter tends to decrease the local Nusselt number. Moreover, the local Nusselt number increases as the buoyancy ratio or the Lewis number is decreased.  相似文献   

12.
An analytical study is made of the free and forced convection boundary layer flow past a porous medium bounded by a semi-infinite vertical porous plate. Locally similar solutions are then obtained by a perturbation method for large suction. Solutions for the velocity and temperature distributions are shown graphically for various suction velocities and values of the driving parameter Gr/R, where Gr is the Grashof number and Re is the Reynolds number. The corresponding values of the skin friction coefficient and the Nusselt number are finally shown in tabular form.  相似文献   

13.
Double-diffusive natural convection in a rectangular fluid-saturated porous medium has been studied analytically and numerically. The analysis reveals that there is a range of buoyancy ratios N in which one obtains two types of solutions or oscillating convection. In the case of 0.4 < N < 1.0, there exist two analytical solutions when Rc = 100 and Le = 30. In that case, two solutions, temperature-dominated and concentration-dominated solutions, are calculated when the aspect ratio is small. It is found that the oscillation is due to a temporal formation of a two-roll flow pattern in the cavity when the aspect ratio is sufficiently large. The oscillation of time-dependent Nusselt number and flow patterns are shown. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 255–265, 1999  相似文献   

14.
This study examines the double diffusive convection of a sparsely packed micropolar fluid‐saturated porous medium by using a linear stability analysis. The Darcy–Brinkman–Forchheimer model is employed for the porous fluid layer. The stability criterion is sought analytically with the simple free‐free, iso‐thermal, and iso‐solutal boundary conditions. The dependence of stationary or oscillatory convection on the porous parameter, Lewis number, solutal Rayleigh number, and parameters involved in micropolar fluids is drawn and discussed. The results show that the critical wave number is found to be insensitive to the variation of governing parameters except for the porous parameter. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21052  相似文献   

15.
Natural convection heat transfer in a horizontal enclosure filled with anisotropic porous media,being isothermally heated at bettom and cooled at top while the vertical walls being adiabatic,is numerically studied by applying the Brinkman model-a modified form of Darcy model giving consideratioin to the viscous effect.The results show that:(1)a larger permeability ratio(K^*) causes a lower flow intensity in the enclosure and a smaller Nusselt number,all Nusselt numbers approach unity in the limit of K^*→∞;a larger thermal conductivity ratio(λ^*) causes a stranger distortion of isotherms in the enclosure and a higher flow velocity near the walls,all the Nusselt numbers approach unity in the limit of λ^*-→0,the permeability and thermal conductivity ratios generally have opposing effects on the Nusselt number.(2) an increasing Darcy number decreases the flow intensity and heat tansfer rates,which is more significant at a lower permeability ratio.In particular,with K^*≤0.25,the Nusselt number for Da=10^-3 would differ from that of Darcy flow up to an amount of 30%,an analysis neglecting the non-Darican effect will inevitably be of considerable error.  相似文献   

16.
In this paper, the onset of convection in a horizontal porous layer, heated from below and cooled at the top with a constant heat flux, is investigated. The porous medium is assumed to be anisotropic in permeability with its principal axes arbitrary oriented with respect to the gravity vector. The critical Rayleigh number and wavenumber at marginal stability are calculated.  相似文献   

17.
The classical problem of steady Darcy free convection in a square cavity filled with a porous medium has been extended to the case of a bidisperse porous medium (BDPM) by following the recent model proposed by Nield and Kuznetsov [D.A. Nield, A.V. Kuznetsov, Natural convection about a vertical plate embedded in a bidisperse porous medium, Int. J. Heat Mass Transfer 51 (2008) 1658–1664] and Rees et al. [D.A.S. Rees, D.A. Nield, A.V. Kuznetsov, Vertical free convective boundary-layer flow in a bidisperse porous medium, ASME J. Heat Transfer 130 (2008) 1–9]. The transformed partial differential equations in terms of the dimensionless stream function and temperature are solved numerically using a finite-difference method for some values of the governing parameters when the Rayleigh number Ra is equal to 102 and 103. Results are presented for the flow field with streamlines, temperature field by isotherms and heat transfer by local and mean Nusselt numbers are presented for both the f- and p-phases. It is found that the most important parameters that influence the fluid flow and heat transfer are the inter-phase heat transfer parameter H and the modified thermal conductivity ratio parameter γ.  相似文献   

18.
The onset of convection in a horizontal layer filled with a fluid-saturated porous medium is studied in this paper. On the lower wall there is an exothermic surface reaction, described by the Arrhenius kinetics, while the upper wall is subjected to uniform temperature and concentration. The problem, cast in dimensionless form, is governed by three dimensionless parameters pertaining to the exothermic reaction and the Lewis number. Once the basic state is solved, a linearized stability analysis is then performed and the resulting eigenvalue problem is solved using a conventional shooting method. One determines numerically the critical Rayleigh and wave numbers at the onset of convection, for various values of the problem parameters.  相似文献   

19.
Linear stability theory is applied to the problem of Marangoni convection in a rotating horizontal fluid layer subject to a uniform heat flux from below. The fluid layer is bounded from below by a rigid boundary and above by a deformable free surface. We show how the PrTa parameter space is divided into regions in which steady or oscillatory convection is preferred.  相似文献   

20.
This paper presents the mixed convection heat and mass transfer near a vertical surface in a stratified porous medium using an integral method. The conservation equations that govern the problem are reduced to a system of coupled non‐linear ordinary differential equations, which is then reduced into a single algebraic equation using exponential profiles for the temperature and concentration. The results for heat and mass transfer rates in terms of Nusselt and Sherwood number are presented for a wide range of governing parameters like the buoyancy ratio (N), Lewis number (Le), flow driving parameter (Ra/Pe), in addition to both thermal and solutal parameters (S and R). The results indicate that the stratification effects have considerable influence on both the heat and mass transfer rates. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20300  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号