首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
A genetic basis for tetracycline resistance in cutaneous propionibacteria was suggested by comparing the nucleotide sequences of the 16S rRNA genes from 16 susceptible and 21 resistant clinical isolates and 6 laboratory-selected tetracycline-resistant mutants of a susceptible strain. Fifteen clinical isolates resistant to tetracycline were found to have cytosine instead of guanine at a position cognate with Escherichia coli 16S rRNA base 1058 in a region important for peptide chain termination and translational accuracy known as helix 34. Cytosine at base 1058 was not detected in the laboratory mutants or the tetracycline-susceptible strains. The apparent mutation was recreated by site-directed mutagenesis in the cloned E. coli ribosomal operon, rrnB, encoded by pKK3535.E. coli strains carrying the mutant plasmid were more resistant to tetracycline than those carrying the wild-type plasmid both in MIC determinations and when grown in tetracycline-containing liquid medium. These data are consistent with a role for the single 16S rRNA base mutation in clinical tetracycline resistance in cutaneous propionibacteria.  相似文献   

2.
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

3.
A newly identified class of highly thiostrepton-resistant mutants of the archaeon Halobacterium halobium carry a missense mutation at codon 18 within the gene encoding ribosomal protein L11. In the mutant proteins, a proline, conserved in archaea and bacteria, is converted to either serine or threonine. The mutations do not impair either the assembly of the mutant L11 into 70 S ribosomes in vivo or the binding of thiostrepton to ribosomes in vitro. Moreover, the corresponding mutations at proline 22, in a fusion protein of L11 from Escherichia coli with glutathione-S-transferase, did not reduce the binding affinities of the mutated L11 fusion proteins for rRNA of of thiostrepton for the mutant L11-rRNA complexes at rRNA concentrations lower than those prevailing in vivo. Probing the structure of the fusion protein of wild-type L11, from E. coli, using a recently developed protein footprinting technique, demonstrated that a general tightening of the C-terminal domain occurred on rRNA binding, while thiostrepton produced a footprint centred on tyrosine 62 at the junction of the N and C-terminal domains of protein L11 complexed to rRNA. The intensity of this protein footprint was strongly reduced for the mutant L11-rRNA complexes. These results indicate that although, as shown earlier, thiostrepton binds primarily to 23 S rRNA, the drug probably inhibits peptide elongation by impeding a conformational change within protein L11 that is important for the function of the ribosomal GTPase centre. This putative inhibitory mechanism of thiostrepton is critically dependent on proline 18/22. Moreover, the absence of this proline from eukaryotic protein L11 sequences would account for the high thiostrepton resistance of eukaryotic ribosomes.  相似文献   

4.
5.
A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18a delta and rps18b delta null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18a delta then rps18b delta. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products.  相似文献   

6.
The secA gene of Streptomyces lividans was cloned using as probe a 57-mer oligonucleotide based on conserved sequences of the Escherichia coli secA and the Bacillus subtilis div genes. It encodes a protein of 946 amino acids (aa) with a deduced M(r) of 106,079, with high similarity to all known SecA proteins. All the previously described conserved motifs of SecA proteins were conserved in the S. lividans protein. The secA gene of S. lividans restored sensitivity to sodium azide in E. coli SecA4 (AzR) a mutant with an azide-resistant (ATPase defective) SecA protein. However, it did not complement the temperature-sensitive mutation in E. coli MM52 (SecAts) (a conditional lethal mutant defective in protein translocation) allowing only poor growth at the nonpermissive temperature. secA homologous sequences were present in 11 different species of Streptomyces and Nocardia.  相似文献   

7.
Ribosomes from a clinical isolate of E coli were purified and characterized. The structural features of these ribosomes were identical to wild-type E coli ribosomes, with the exception that rRNA in general, but especially 23S rRNA, was degraded as a result of the transition from early to late logarithmic growth phase, on different growth media. Analysis of the ribosomal protein by gel electrophoresis indicated that the L12/L7 molar ratio increases during early logarithmic phase, reaching a maximum value of about 1.6 at midlogarithmic phase, and then falling to 0.7 in late logarithmic phase. Concomitantly with L12/L7 alterations, the activity status of ribosomal peptidyltransferase was found to undergo a striking shift. Reconstitution experiments demonstrated that the two effects are closely related. Moreover, L12/L7 molar ratio as well as peptidyltransferase activity increased with increasing growth rate. In the latter case, however, the acetylation level of L12 protein per se seemed to be inadequate to modulate the peptidyltransferase activity.  相似文献   

8.
Four mutations in the mitochondrial cytochrome b of S. cerevisiae have been characterized with respect to growth capacities, catalytic properties, ATP/2e- ratio, and transmembrane potential. The respiratory-deficient mutant G137E and the three pseudo-wild type revertants E137 + I147F, E137 + C133S, and E137 + N256K were described previously (Tron and Lemesle-Meunier, 1990; Di Rago et al., 1990a). The mutant G137E is unable to grow on respiratory substrates but its electron transfer activity is partly conserved and totally inhibited by antimycin A. The secondary mutations restore the respiratory growth at variable degree, with a phosphorylation efficiency of 12-42% as regards the parental wild type strain, and result in a slight increase in the various electron transfer activities at the level of the whole respiratory chain. The catalytic efficiency for ubiquinol was slightly (G137E) or not affected (E137 + I147F, E137 + C133S, and E137 + N256K) in these mutants. Mutation G137E induces a decrease in the ATP/2e- ratio (50% of the W.T. value) and transmembrane potential (60% of the W.T. value) at the bc1 level, whereas the energetic capacity of the cytochrome oxidase is conserved. Secondary mutations I147F, C133S, and N256K partly restore the ATP/2e- ratio and the transmembrane potential at the bc1 complex level. The results suggest that a partial decoupling of the bc1 complex is induced by the cytochrome b point mutation G137E. In the framework of the protonmotive Q cycle, this decoupling can be explained by the existence of a proton wire connecting centers P and N in the wild type bc1 complex which may be amplified or uncovered by the G137E mutation when the bc1 complex is functioning.  相似文献   

9.
The ability of the Escherichia coli intercistronic rplJL region to initiate effectively the synthesis of the ribosomal protein L7/12, the only ribosomal component present in the ribosome in four copies rather than in one was studied in vivo and in vitro. It was shown that the structural determinants located upstream from the Shine-Dalgarno sequence and sharing structural motifs with the known E. coli translational enhancers are necessary for high activity of this region in translation initiation. These data indicate that mRNA-protein interactions through the ribosomal S1 protein play an important role in the formation of the initiation complex, and an enhancer region within the leader of the L7/12 mRNA serves as a target for this protein.  相似文献   

10.
A carboxyl group of Asp-285 is essential for tetracycline/H+ antiport mediated by the transposon Tn10-encoded metal-tetracycline/H+ antiporter (TetA) of Escherichia coli (Yamaguchi, A., Akasaka, T., Ono, N., Someya, Y., Nakatani, M., and Sawai, T. (1992) J. Biol. Chem. 267, 7490-7498). Spontaneous tetracycline resistance revertants were isolated from E. coli cells carrying the Asn-285 mutant tetA gene. All of the revertants were due to the second-site mutation at codon 220 of GCG (Ala) to GAG (Glu). The Km value of the tetracycline transport mediated by the revertant TetA protein was about 4-fold higher than that of the wild-type, indicating that the revertant is a low affinity mutant. A Glu-220 and Asn-285 double mutant constructed by site-directed mutagenesis showed the same properties as the revertants, confirming that the mutation of Ala-220 is solely responsible for the suppression. The Asp-220 mutation of the Asn-285 mutant resulted in a lower level of restoration of the tetracycline resistance and the transport activity than in the case of the Glu-220 mutation. A single mutation replacing Ala-220 with Glu or Asp caused about a 2-4-fold decrease in the tetracycline resistance, but no crucial change in the transport activity. It is not likely that Glu-220 is required for a charge-neutralizing salt bridge because an unpaired negative charge in a Glu-220 or Asp-220 single mutant did not cause a serious change in the activity. An alternative explanation is reasonable; Asp-285 directly contributes to the binding of a cationic substrate, metal-tetracycline chelation complex, or proton, and an acidic residue at position 220 can take over the role of Asp-285.  相似文献   

11.
Shiga toxin type 1 (Stx1) belongs to the Shiga family of bipartite AB toxins that inactivate eukaryotic 60S ribosomes. The A subunit of Stxs are N-glycosidases that share structural and functional features in their catalytic center and in an internal hydrophobic region that shows strong transmembrane propensity. Both features are conserved in ricin and other ribosomal inactivating proteins. During eukaryotic cell intoxication, holotoxin likely moves retrograde from the Golgi apparatus to the endoplasmic reticulum. The hydrophobic region, spanning residues I224 through N241 in the Stx1 A subunit (Stx1A), was hypothesized to participate in toxin translocation across internal target cell membranes. The TMpred computer program was used to design a series of site-specific mutations in this hydrophobic region that disrupt transmembrane propensity to various degrees. Mutations were synthesized by PCR overlap extension and confirmed by DNA sequencing. Mutants StxAF226Y, A231D, G234E, and A231D-G234E and wild-type Stx1A were expressed in Escherichia coli SY327 and purified by dye-ligand affinity chromatography. All of the mutant toxins were similar to wild-type Stx1A in enzymatic activity, as determined by inhibition of cell-free protein synthesis, and in susceptibility to trypsin digestion. Purified mutant or wild-type Stx1A combined with Stx1B subunits in vitro to form a holotoxin, as determined by native polyacrylamide gel electrophoresis immunoblotting. StxA mutant A231D-G234E, predicted to abolish transmembrane propensity, was 225-fold less cytotoxic to cultured Vero cells than were the wild-type toxin and the other mutant toxins which retained some transmembrane potential. Furthermore, compared to wild-type Stx1A, A231D-G234E Stx1A was less able to interact with synthetic lipid vesicles, as determined by analysis of tryptophan fluorescence for each toxin in the presence of increasing concentrations of lipid membrane vesicles. These results provide evidence that this conserved internal hydrophobic motif contributes to Stx1 translocation in eukaryotic cells.  相似文献   

12.
Formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for initiation of protein synthesis in eubacteria. The determinants for formylation are clustered mostly in the acceptor stem of the initiator tRNA. Previous studies suggested that a 16 amino acid insertion loop, present in all eubacterial MTF's (residues 34-49 in the E. coli enzyme), plays an important role in specific recognition of the initiator tRNA. Here, we have analyzed the effect of site-specific mutations of amino acids within this region. We show that an invariant arginine at position 42 within the loop plays a very important role both in the steps of substrate binding and in catalysis. The kinetic parameters of the R42K and R42L mutant enzymes using acceptor stem mutant initiator tRNAs as substrates suggest that arginine 42 makes functional contacts with the determinants at the 3:70 and possibly also the 2:71 base pairs in the acceptor stem of the initiator tRNA. The kinetic parameters of the G41R/R42L double mutant enzyme are essentially the same as those of R42L mutant, suggesting that the requirement for arginine at position 42 cannot be fulfilled by an arginine at position 41. Along with other data, this result suggests that the insertion loop, which is normally unstructured and flexible, adopts a defined conformation upon binding to the tRNA.  相似文献   

13.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

14.
Growth of Thermus thermophilus HB27 was inhibited by a proline analog, 3,4-dehydroproline (DHP). This result suggested that the gamma-glutamyl kinase (the product of the proB gene) was inhibited by feedback inhibition in T. thermophilus. DHP-resistant mutants were reported previously for Escherichia coli (A. M. Dandekar and S. L. Uratsu, J. Bacteriol. 170:5943-5945, 1988) and Serratia marcescens (K. Omori, S. Suzuki, Y. Imai, and S. Komatsubara, J. Gen. Microbiol. 138:693-699, 1992), and their mutated sites in the proB gene were identified. Comparison of the amino acid sequence of T. thermophilus gamma-glutamyl kinase with those of E. coli and S. marcescens mutants revealed that the DHP resistance mutations occurred in the amino acids conserved among the three organisms. For eliminating the feedback inhibition, we first constructed a DHP-resistant mutant, TH401, by site-directed mutagenesis at the proB gene as reported for the proline-producing mutant of S. marcescens. The mutant, TH401, excreted about 1 mg of L-proline per liter at 70 degreesC after 12 h of incubation. It was also suggested that T. thermophilus had a proline degradation and transport pathway since it was able to grow in minimal medium containing L-proline as sole nitrogen source. In order to disrupt the proline degradation or transport genes, TH401 was mutated by UV irradiation. Seven mutants unable to utilize L-proline for their growth were isolated. One of the mutants, TH4017, excreted about 2 mg of L-proline per liter in minimal medium at 70 degreesC after 12 h of incubation.  相似文献   

15.
16.
The alpha subunit of the heterotrimeric G protein G12, harboring a mutation in the GTP binding domain (Q229L), behaves as a potent oncogene in NIH 3T3 cells. This alpha subunit, like most other G protein alpha subunits, undergoes palmitoylation, the reversible posttranslational addition of palmitate to cysteine residues. We investigated the role of palmitoylation of alpha12 in membrane localization and transformation efficiency and whether another lipid modification, myristoylation, could substitute for palmitoylation. NIH 3T3 cells were stably transfected with plasmids that expressed the wild-type alpha12, the constitutively active Q229L (QL) mutant, and mutants in which C11 was changed to S (C11S) and S2 and R6 were changed to G and S, respectively (S2G). Incorporation of [3H]palmitate was found in the endogenous and expressed alpha12 but not in the C11S mutants. Incorporation of [3H]myristate was found only in the S2G mutants. The wild type, QL mutant, and all the acylation mutants were found in the particulate fraction. Cells expressing the nonpalmitoylated C11S,QL mutant did not undergo transformation. The S2G mutation in the nonpalmitoylated C11S,QL mutant restored the transformation efficiency to a greater level than that of the palmitoylated QL mutant as measured by foci formation, growth in soft agar, and growth rate. Palmitoylation was critical for the transformation efficiency of alpha12 but not specifically required because myristoylation could substitute for these functions.  相似文献   

17.
The ribosomal environment of the N-terminus of the nascent polypeptide chain has been investigated using peptides of different lengths, synthesized in situ on Escherichia coli ribosomes; the peptides each carry a photoreactive diazirine moiety at their N-terminus, so as to generate cross-links to neighbouring ribosomal components. Our previous studies [Choi, K. M. & Brimacombe, R. (1998) Nucleic Acids Res. 26, 887-895] with three independent families of peptides, derived from the E. coli ompA protein gene, the tetracycline-resistance gene and the bacteriophage T4 gene 60, identified a series of sites within the 23S rRNA to which the peptides became cross-linked. The distribution of these cross-links indicated that the nascent peptide is very flexible within the 50S subunit. Here, we demonstrate that the N-termini of the ompA and gene-60 peptides can, in addition, even become concomitantly cross-linked to the 30S subunit. The cross-linking is predominantly to 30S ribosomal proteins S1, S2, S4 and (to a lesser extent) S3, which form a cluster near to the decoding region. This result is discussed in terms of the flexibility of the nascent peptide during the co-translational folding process, and in terms of the 'ribosomal bypass' phenomenon which is known to occur during translation of the gene 60 mRNA.  相似文献   

18.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0.  相似文献   

19.
The thiostrepton-resistance gene encoding the 23S rRNA A1067 methyltransferase from Streptomyces azureus has been overexpressed in Escherichia coli using a T7-RNA-polymerase-dependent expression vector. The protein was efficiently expressed at levels up to 20% of total soluble protein and purified to near homogeneity. Kinetic parameters for S-adenosyl-L-methionine (Km = 0.1 mM) and an RNA fragment containing nucleotides 1029-1122 of the 23S ribosomal RNA from E. coli (Km = 0.001 mM) were determined. S-Adenosyl-L-homocysteine showed competitive product inhibition (Ki = 0.013 mM). Binding of either thiostrepton or protein L11 inhibited methylation. RNA sequence variants of the RNA fragment with mutations in nucleotides 1051-1108 were tested as substrates for the methylase. The experimental data indicate that methylation is dependent on the secondary structure of the hairpin including nucleotide A1067 and the exact sequence U(1066)-A(1067)-G(1068)-A(1069)-A(1070) of the single strand.  相似文献   

20.
The ability of Shigella flexneri to multiply within colonic epithelial cells and spread to adjacent cells is essential for production of dysentery. Two S. flexneri chromosomal loci that are required for these processes were identified by screening a pool of TnphoA insertion mutants. These mutants were able to invade cultured epithelial cells but could not form wild-type plaques. Analysis of the nucleotide sequence indicated that the sites of TnphoA insertion were within two different regions that are almost identical to Escherichia coli K-12 chromosomal sequences of unknown functions. One region is located at 70 min on the E. coli chromosome, upstream of murZ, while the other is at 28 min, downstream of tonB. The mutant with the insertion at 70 min was named vpsC because it showed an altered pattern of virulence protein secretion. The vpsC mutant formed pinpoint-sized plaques, was defective in recovery from infected tissue culture cells, and was sensitive to lysis by the detergent sodium dodecyl sulfate. Recombinant plasmids carrying the S. flexneri vpsA, -B, and -C genes complemented all of the phenotypes of the vpsC mutant. A mutation in vpsA resulted in the same phenotype as the vpsC mutation, suggesting that these two genes are part of a virulence operon in S. flexneri. The mutant with the insertion at 28 min was interrupted in the same open reading frame as S. flexneri ispA. This ispA mutant could not form plaques and was defective in bacterial septation inside tissue culture cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号