首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an analytical model for perforation of composite sandwich panels with honeycomb core subjected to high-velocity impact has been developed. The sandwich panel consists of a aluminium honeycomb core sandwiched between two thin composite skins. The solution involves a three-stage, perforation process including perforation of the front composite skin, honeycomb core, and bottom composite skin. The strain and kinetic energy of the front and back-up composite skins and the absorbed energy of honeycomb core has been estimated. In addition, based on the energy balance and equation of motion the absorbed energy of sandwich panel, residual velocity of projectile, perforation time and projectile velocity have been obtained and compared with the available experimental tests and numerical model. Furthermore, effects of composite skins and aluminium honeycomb core on perforation resistance and ballistic performance of sandwich panels has been investigated.  相似文献   

2.
Aluminium foam core sandwich panels are good energy absorbers for impact protection applications, such as light-weight structural panels, packing materials and energy absorbing devices. In this study, the high-velocity impact perforation of aluminium foam core sandwich structures was analysed. Sandwich panels with 1100 aluminium face-sheets and closed-cell A356 aluminium alloy foam core were modelled by three-dimensional finite element models. The models were validated with experimental tests by comparing numerical and experimental damage modes, output velocity, ballistic limit and absorbed energy. By this model the influence of foam core and face-sheet thicknesses on the behaviour of the sandwich panel under impact perforation was evaluated.  相似文献   

3.
Sandwich panels are used in industrial fields where lightness and energy absorption capabilities are required. In order to increase their exploitation, a wide knowledge of their mechanical behavior also in severe loading conditions is crucial. Light structures such as the one studied in the present work, sandwich panels with aluminum skins and Nomex honeycomb core, are exposed to a possible decrease of their structural integrity, resulting from a low velocity impact. In order to quantitatively describe the decrease of the sandwich mechanical performance after an impact, an experimental program of compression after impact tests (CAI) has been performed. Sandwich panel specimens have been damaged during a low velocity impact test phase, using an experimental apparatus based on a free fall mass tower. Different experimental impact energies have been tested. Damaged and undamaged specimens have been consequently tested adopting a compression after impact procedure. The relation between the residual strength of the panel and the possible relevant parameters has been statistically investigated. The results show a clear reduction of the residual strength of the damaged panels compared with undamaged ones. Nevertheless, a reduced dependency between the impact energy and the residual strength is found above a certain impact energy threshold.  相似文献   

4.
In this study the perforation of composite sandwich structures subjected to high-velocity impact was analysed. Sandwich panels with carbon/epoxy skins and an aluminium honeycomb core were modelled by a three-dimensional finite element model implemented in ABAQUS/Explicit. The model was validated with experimental tests by comparing numerical and experimental residual velocity, ballistic limit, and contact time. By this model the influence of the components on the behaviour of the sandwich panel under impact load was evaluated; also, the contribution of the failure mechanisms to the energy-absorption of the projectile kinetic energy was determined.  相似文献   

5.
The response and energy absorption capacity of cellular sandwich panels that comprises of silk-cotton wood skins and aluminum honeycomb core are studied under quasi-static and low velocity impact loading. Two types of sandwich panels were constructed. The Type-I sandwich panel contains the silk-cotton wood plates (face plates) with their grains oriented to the direction of loading axis and in the case of Type-II sandwich panel, the wood grains were oriented transverse to the loading axis. In both of the above cases, aluminum honeycomb core had its cell axis parallel to the loading direction. The macro-deformation behavior of these panels is studied under quasi-static loading and their energy absorption capacity quantified. A series of low velocity impact tests were conducted and the dynamic data are discussed. The results are then compared with those of quasi-static experiments. It is observed that the energy absorption capacity of cellular sandwich panels increases under dynamic loading when compared with the quasi-static loading conditions. The Type-I sandwich panels tested in this study are found to be the better impact energy absorbers for low velocity impact applications.  相似文献   

6.
This paper presents a detailed finite element (FE) analysis aiming to investigate numerically the impact deformation of multi-ply fabric panels with angled plies. The purpose of the investigation described in this paper is to study numerically the way in which the multi-ply panels deform and to identify the energy absorption in different panel constructions. The FE model was created using ABAQUS to simulate the transverse impact of a projectile onto various woven fabric panels. Influencing factors such as the impact velocity, panel construction and the number of plies are taken into account in the FE simulations. The numerical predictions show that the orientation of plies significantly affects the energy-absorbing capacity of the multi-ply fabric panels. The angled panels always increase the energy-absorbing capacity, compared with the aligned panel, by as much as 20%, depending on the number of plies in the panel. In addition, the stacking sequence of oriented plies also plays an important role in absorbing the energy. For the multi-ply fabric panel with large numbers of plies, there is an optimised sequence of plies which can maximise the energy-absorbing capacity of the panel. An important aspect of the work is validation of the numerical technique. It is shown that the FE predictions are highly consistent with the experimental study [1].  相似文献   

7.
In order to optimise the construction of soft body armour panels by hybridization, this study aims to identify materials determination for hybrid panel. Different ballistic characteristics of aramid woven fabrics and Ultra High Molecular Weight Polyethylene uni-directional laminates were investigated through ballistic test and fractorgaphic analysis. With an increasing of total layer numbers in a panel, specific energy absorption of Twaron woven panel shows a decrease trend, and Dyneema UD panel exhibits an increasing trend. Such reverse trend of ballistic performance is due to different failure modes of two materials. According to fractorgraphic analysis, Twaron fabric has large transverse deformation for back layers in a perforated panel. This results in higher energy absorption in back layers. For Dyneema UD, thermal damage is the dominant failure mode, which can result in performance degradation especially for front layers on the strike face. In addition, Dyneema UD exhibits significant advantage of minimize Backface Signature (BFS) and a little higher perforation ratio than that of Twaron woven panels. Based on these findings, an optimized hybrid panel is designed by combing Twaron woven fabric before Dyneema UD. In comparison with other panels with different layer sequences, this hybridization manner exhibited better ballistic performance, including improvement of energy absorption, minimized BFS of the non-perforated panel and reduction of perforation ratio. These findings indicated that material determination for hybrid design should be based on ballistic characteristics of different materials and requirements of different regions in a panel.  相似文献   

8.
The energy absorbed during the failure of a variety of structural shapes is influenced by material, geometry and the failure mode. Failure initiation and propagation of the honeycomb sandwich under loading involves not only non-linear behavior of the constituent materials, but also complex interactions between various failure mechanisms. Therefore, there is a need for an improved understanding of the material characteristics and energy absorption modes to facilitate the design of sandwich performance. In the present study, failure initiation and propagation characteristics of sandwich beams and panels subjected to quasi-static and impact loadings were investigated. Experimental studies involved a series of penetration and perforation tests on 2D beam and 3D panel configurations using a truncated cone impactor with impact velocities up to 10 m/s. Preliminary tests were also performed on the sandwich beams subjected to the three-point bending. Load-carrying, energy-absorbing characteristics and failure mechanisms under quasi-static and impact loading were determined. Dominant deformation modes involved upper skin compression failure in the vicinity of the indenter, core crushing and lower skin tensile failure.  相似文献   

9.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

10.
《Composites》1995,26(12):803-814
An elastic-plastic beam bending model has been developed to simulate the post-upper skin failure energy absorption behaviour of polymer composite sandwich beams under three-point bending. The beam skins consist of woven and chopped strand glass, while the core is a resin impregnated non-woven polyester material known as Coremat. A polyester resin was used for the construction. The theoretical model consists of a central hinge dominated by a crushing core and tensile elastic strains in the lower skin. Experimental measurements of the non-linear force-deflection characteristics for the beam are compared to the theoretical predictions from the model, and it is shown that the shear crushing of the core has an important effect on the behaviour of the beam. The model shows that the most important material properties are the lower skin tensile failure strain and the core crushing strength. Dynamic effects are included in the model in the form of a strain rate dependence of the core crushing stress and the strain rate dependence of the failure strain in the lower skin. The increase in material strength with strain rate gives rise to an improved energy absorption capacity for the beam under impact loading.  相似文献   

11.
《Composites》1990,21(2):155-168
Instrumented drop weight impact and compression after impact test methods were used to assess the impact performance and damage tolerance of film-stacked, woven carbon fibre-reinforced PEEK and woven carbon fibre-reinforced PPS composite systems. The tests were performed at three energy levels with a constant velocity, and at three velocity levels with a constant energy. Extreme energy levels were also determined. While the effect of the impact velocity was found to be insignificant within the range of the velocities used, the impact energy significantly affected the impact performance of the panels. Carbon fibre PPS panels evinced a high resistance to perforation byway of extensive delamination. On the other hand, carbon fibre PEEK panels showed an ability to confine the damage zone and hence, to markedly increase the damage tolerance of the panels. A set of material selection criteria for impact applications, based on the results of this study, has been proposed.  相似文献   

12.
The work presented in this paper details the development of a finite element (FE) model of a soccer ball, allowing for a greater understanding of the performance of soccer balls under dynamic conditions that are representative of play. The model consists of composite shell elements that include a hyperelastic strain energy potential equation to define the latex bladder layer and a plane stress orthotropic elastic material model to define the anisotropic woven fabric outer panels. The model was validated through a series of experimental impact tests whereby the ball was impacted normal to a rigid plate at an inbound velocity of approximately 34 ms−1 (76 mph), with each impact recorded using high speed video (HSV) techniques. It was found that the combined effects of ball design and panel material anisotropy resulted in impact properties such as coefficient of restitution, contact time, deformation and the 2D shape taken up by the ball at maximum deformation, to vary with pre-impact ball orientation. The model showed good agreement with the measurements, and its ability to represent the effects of anisotropy in ball design.  相似文献   

13.
Quasi-static compression and three-point-bending tests were conducted to reveal the failure mechanisms and the energy absorption capacity of the woven textile sandwich material. The compression induces shear deformation due to the tilting of fiber piles within the core. The ductile load–displacement curves are featured by a long deformation plateau by plastic rotations of core piles. Densifications become apparent in the later stage of compression. In three-point-bending, skin crippling and shear failure dominate the load capacity of the thicker panels, while skin fracture dominates the thinner ones. After the initial failure, the progression of plastic hinges renders the panels residual load capacity in a long deflection plateau. The tests suggest that woven textile sandwich material is ideal to serve as an energy absorbing core.  相似文献   

14.
鉴于泡沫铝材料优异的吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-泡沫铝芯层-钢板的抗爆组合板。对厚度为10 cm、7 cm和5 cm的组合板进行了5组不同装药量的爆炸试验,考察了各板在不同装药量爆炸条件下的变形及破坏情况,并对变形破坏过程进行了理论分析。研究表明:组合板承受爆炸冲击荷载时,通过局部压缩变形和整体弯曲变形吸收能量。钢板相同时,适当增大泡沫铝芯层厚度,增强面板与芯层间连接,可提高该组合板的抗爆性能,防止组合板发生剥离,减小其承受爆炸冲击荷载时产生的变形。  相似文献   

15.
Quasi-static uniform compression tests and low-velocity concentrated impact tests were conducted to reveal the failure mechanisms and energy absorption capacity of two-layer carbon fiber composite sandwich panels with pyramidal truss cores. Three different volume-fraction cores (i.e., with different relative densities) were fabricated: 1.25%, 1.81%, and 2.27%. Two-layer sandwich panels with identical volume-fraction cores (either 1.25% or 2.27%), and also stepwise graded panels consisting of one light and one heavy core, were investigated under uniform quasi-static compression. Under quasi-static compression, load peaks were identified with complete failure of individual truss layers due to strut buckling or strut crushing, and specific energy absorption was estimated for different core configurations. In the impact test, the damage resulting from low-velocity concentrated impact was investigated. Our results show that compared with glass fiber woven textile truss cores, two-layer carbon fiber composite pyramidal truss cores have comparable specific energy absorptions, and thus could be used in the development of novel light-weight multifunctional structures.  相似文献   

16.
碳纤维夹芯板受到冲击载荷后易发生分层损伤,在工程应用中严重影响结构安全。首先对碳纤维/铝蜂窝夹芯板界面进行Kevlar短纤维增韧设计;其次对比研究了Kevlar短纤维界面增韧及未增韧夹芯板的低速冲击行为和冲击后压缩行为,将其冲击后剩余压缩强度、能量吸收及破坏模式进行对比;最后运用数字图像相关技术(DIC)获取增韧及未增韧试件在冲击后压缩过程中的应变云图。结果表明:低速冲击过程中,Kevlar短纤维增韧可以有效提高碳纤维/铝蜂窝夹芯板的冲击损伤阻抗,增韧试件的临界损伤阈值载荷明显高于未增韧试件;相比于未增韧试件,4种冲击能量下增韧试件的冲击后剩余压缩强度(CAI)值分别提高了2.68%、9.24%、4.65%、11.13%,能量吸收分别提高了69.09%、52.88%、55.03%、101.70%;对碳纤维/铝蜂窝夹芯板冲击后压缩过程中的DIC观测,进一步验证了芳纶短纤维对界面的增韧效果,并揭示了增韧界面对结构的增强机制。  相似文献   

17.
为了研究泡沫填充褶皱夹芯结构低速冲击响应特性与损伤机制,采用热压法制备了玻璃纤维增强S型褶皱夹芯板,并使用聚氨酯泡沫进行了填充,通过落锤试验机对夹芯板节点与基座两个位置进行了冲击试验。研究表明,冲击位置对泡沫填充褶皱夹芯板的失效模式存在影响。当冲击位置为节点时,夹芯板芯子以凸侧面曲面壁压溃断裂失效为主,泡沫的填充起到了提供力矩的作用。当冲击位置为基座时,夹芯板芯子以凹侧面曲面壁撕裂和凸侧面曲面壁压溃失效为主,夹芯板损伤沿板厚度方向扩展充分,导致冲击载荷均匀化。在相同冲击能量下,节点与基座冲击相比,夹芯板的最大载荷力提高,并且比较稳定。此外,节点载荷峰值产生的冲击位移较低于基座冲击。   相似文献   

18.
The low velocity impact behavior of three layer thermoplastic laminates consisting of woven glass fiber and polypropylene has been investigated for two different fiber volume configurations. Panels with configurations of 50/50 and 20/80 in the warp and fill directions were subjected to low velocity impact energies between 4 and 16 J using an instrumented dropping weight impact tower. Load vs. displacement plots showed the excellent energy absorbing capabilities exhibited by the woven composites. Both configurations dissipated approximately 75% of the 16 J incident impact energy. An energy-balance model was used to successfully predict the impact response of the woven thermoplastic composites. The impact damaged plates were tested under four point bend (4 PB) loading conditions. Results showed a reduction in flexural strength and modulus as the impact energy increased. A simple compression molding damage repair process was applied to the 16 J impacted composite plates. 4 PB testing of the repaired samples revealed a significant recovery in the flexural strength and modulus of the thermoplastic woven composite with both fiber configurations.  相似文献   

19.
In this contribution, the impact dynamic response and failure modes of fibre–metal laminated panels subjected to low velocity impact were investigated and presented. The fibre–metal laminate in this paper comprised of a layer of glass fibre-reinforced plastics sandwiched between two layers of aluminium alloy. Two different types of glass fibre-reinforced plastics were used for the fabrication: unidirectional and woven. A fairly extensive experimental investigation was conducted in conjunction with a detailed finite element analysis. The experiments were conducted using a standard drop-weight test machine and the finite element analysis was carried out using a commercially available finite element software. The results of maximum contact force, contact duration and corresponding failure modes are presented, compared and discussed in this technical paper.  相似文献   

20.
Metallic sandwich structures with aluminium foam core are good energy absorbers for impact protection. To study their ballistic performance, quasi-static and impact perforation tests were carried out and the results are reported and analysed in this paper. In the experiments, effects of several key parameters, i.e. impact velocity, skin thickness, thickness and density of foam core and projectile shapes, on the ballistic limit and energy absorption of the panels during perforation are identified and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号