首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
大跨径悬索桥隧道锚变位分析   总被引:5,自引:0,他引:5  
四渡河大桥是我国首次采用隧道式锚碇的大跨径悬索桥。基于实测综合确定的岩体参数,用三维弹塑性有限元法对包括下部公路隧道施工、隧道锚开挖、浇注、预应力施加、挂缆等全部工序进行了模拟。围岩和锚体混凝土离散为8节点三维实体单元,隧道和锚碇的喷射混凝土及二次衬砌离散为4节点三维壳单元。围岩采用修正的Mohr-Coulomb破坏模型。围岩开挖应力的释放用场变量相关折减弹性摸量法模拟。研究结果表明,浇注锚体混凝土阶段顶部围岩最大下沉位移2.3 mm,底部围岩竖向位移趋近于0。在正常缆力下,两个锚体围岩的位移场有部分的独立性,缆力增大时两锚体围岩形成共同的位移场。锚碇可能的破坏形式是两锚体向外侧歪斜拔出;锚碇周围岩体的位移均处于毫米的量级,远小于桥塔顶部位移的容许值。数值分析的结果为该大桥的设计与建造提供了可靠依据。  相似文献   

2.
在隧道锚现场缩尺(1∶10)模型试验中,通过多点位移计监测锚碇及围岩的变形,通过应变仪监测锚碇的应变,通过声发射监测锚碇及围岩变形发展过程,然后,对监测到的变形、应变与锚碇及围岩的声波特性进行对比分析,并结合三维数值模拟预测成果,确定隧道锚模型的变形及应力特性。研究结果表明,当荷载小于5.8~7.1 MN时,锚碇模型处于弹性变形阶段;当荷载小于19.5 MN时,锚碇模型处于弹塑性变形阶段;当载荷大于19.5 MN且小于23.7 MN时,锚碇模型处于屈服阶段;当载荷大于23.7 MN时,锚碇模型处于流变阶段。且根据塑性区的发展变化,可判断隧道锚最可能的潜在滑移面是锚碇下部与岩体之间的接触面;其次,后锚面的上部岩体有可能因拉应力过大而导致隧道锚失稳。  相似文献   

3.
为研究隧道锚碇围岩的力学特性,以几江长江大桥隧道锚碇项目为例,按照相关技术规范规程的要求,详细地归纳和总结了隧道锚碇围岩力学特性试验研究的技术路线和要点,给出了工程区侏罗系上统遂宁组(J3sn)泥岩和砂岩的力学参数试验值与建议值,为重庆地区类似地质条件下工程岩体力学参数提供了参考值,为开展悬索桥隧道锚碇围岩力学特性试验研究提供了试验方法上的参考。  相似文献   

4.
重庆鹅公岩大桥隧道锚碇围岩稳定性   总被引:5,自引:0,他引:5  
重庆鹅公岩长江大桥设计采用悬索桥方案。东锚碇为隧道锚,布置在粉质砂岩和砂质泥岩互层岩体中,锚碇及围岩体的变形状态直接影响大桥的稳定和安全。为了了解锚碇及围岩体在张拉荷载下的变形状态及围岩极限承载能力,对围岩及锚碇进行了较全面的试验研究,包括岩体参数试验、1:12.5实地结构模型张拉试验、数值分析及灰色GM(1,1)模型预测等。研究表明:锚碇及围岩变形较小,变形处于弹性阶段;灰色GM(1,1)预测出岩体极限承载力为设计荷载的6.09~6.15倍。锚碇处于安全状态。并有足够安全储备。试验研究成果为设计提供了可靠依据。  相似文献   

5.
为揭示隧道式锚碇的承载机制,探究加载过程中锚碇及周围岩体的力学响应规律,依托绿枝江大桥隧道锚工程,开展隧道锚1∶100室内三维地质力学模型试验。通过有效模拟散索鞍、主缆散股、预应力管道、钢绞线、等传力构件,真实地还原了隧道式锚碇的传力路径和特征。通过分析从加载到破坏过程中锚–岩界面压力,围岩应力、变形响应,揭示出隧道式锚碇抗拔承载过程的时空演化机制,并在分析深部岩体位移峰值点迁移规律和表观裂纹扩展过程的基础上,预测隧道式锚碇的破坏形态。主要结论有:(1)从加载到破坏过程中,锚–岩界面应力呈无响应(0~5P)–弹性增长(5P~13P)–加速增长(13P~19P)–迅速衰减(21P~23P)的阶段性特征;(2)自加载至破坏过程中,锚塞体是由后向前、逐层挤压上覆岩体,由近及远、逐步调动周围岩体联合承载的;(3) 5P荷载前,锚塞体和围岩基本无变形,5P~13P荷载下,锚体和围岩位移低速线性增长,13P~21P荷载下,锚体和围岩位移均加速增长且锚体位移增长速度大于岩体,23P荷载下岩体损伤严重,锚体因克服岩体束缚被拔出;(4)隧道锚表观裂纹是在锚塞体、围岩的位移加速增长后才产生,极限荷载下形成的网状破裂区为:拱顶以上50cm、洞底以下35 cm、墙左墙右各35 cm,隧道式锚碇最终的破坏形态为不对称的喇叭状。  相似文献   

6.
为了研究高拉拔荷载作用下浅埋软岩(泥岩)隧道式锚碇的稳定性(强度特性、变形规律及长期稳定性),以某在建的长江大桥隧道式锚碇工程为依托,开展了缩尺比例为1∶10的浅埋软岩(泥岩)隧道式锚碇原位模型试验(蠕变试验、极限破坏试验)。研究发现:浅埋软岩(泥岩)隧道式锚碇具有较高的承载能力,在设计荷载甚至在高于设计荷载几倍的荷载作用的情况下,其蠕变变形呈现出基本上趋于稳定的趋势,具有一定的长期稳定性。其破坏模式为锚塞体上方的岩体破裂成块体状,锚塞体下方沿与岩体接触面产生整体错动,破坏的下边界为锚塞体与岩体的接触带,锚塞体混凝土未发生破坏。此外,还探讨了在高拉拔荷载作用下,锚塞体地表围岩蠕变变形的空间分布规律以及锚塞体地表围岩、深部围岩各部位的变形规律。研究成果可为类似的工程提供参考和借鉴。  相似文献   

7.
隧道式锚碇借助两岸天然坚固的岩体开凿隧洞再浇注混凝土形成,利用岩体强度对混凝土锚体形成嵌固作用,达到锚固主缆拉力的目的。如何保护隧道式锚碇周围围岩的完整性是一项很关键的施工控制要点。  相似文献   

8.
悬索桥的隧道锚是承担主缆荷载的关键部件。现有研究表明隧道锚的承载性能主要受围岩、埋深、锚碇体外观等参数影响。为进一步验证其内在规律和参数敏感性,通过考虑埋深、锚碇体长度、围岩类别等影响因素,设计并进行了隧道锚的室内模型试验,研究各因素对隧道锚抗拔承载力的影响;然后基于室内模型试验的相关参数,采用数值方法对室内模型试验进行数值模拟,结果表明,数值方法研究结果与模型试验结果较为吻合;模型试验获得的影响因素规律和破坏特征与数值方法结论一致。研究结果显示,隧道锚承载力的主要影响因素依次为围岩类别、埋深、锚碇体底角等参数,锚碇体长度影响不明显。  相似文献   

9.
隧道式锚碇围岩稳定性研究现状及探讨   总被引:3,自引:1,他引:2  
介绍了国内对隧道式锚碇及围岩稳定性研究和应用现状,并结合重庆鹅公岩大桥实例对目前隧道式锚碇围岩稳定性的研究方法进行了总结和探讨。提出了今后的研究方向。  相似文献   

10.
隧道锚是悬索桥的主要承力结构之一。本文在对隧道锚碇系统承载特性认识的基础上,基于岩土材料变形破坏的一般规律和锚碇围岩的受力特点,考虑到岩土体类型与性质、地形坡度和锚碇体形态等因素对锚碇系统稳定性的影响。通过数值仿真试验来研究这些因素对锚碇系统可能破坏模式的影响规律,揭示了不同影响因素下隧道锚围岩的破坏程度及模式明显不同。  相似文献   

11.
由于各构筑物及其与高陡边坡紧邻,准确把握构筑物围岩的稳定性及其相互影响,是设计方案能否成立的关键。总结分析矮寨大桥基岩稳定的4个方面的关键问题,并介绍大桥基础岩体勘察所采用的多种手段、主要的地质缺陷、基岩稳定分析结果及施工期监测结果。开挖揭露的地质条件、稳定分析及监测结果表明,多种技术方法是全面认识岩体工程地质条件的必要手段。矮寨大桥基岩的稳定问题集中在两岸高陡边坡上,设计荷载并未引起岩体产生明显变形,各构筑物之间相互影响不明显。只要通过适当的加固措施保证边坡岩体的稳定,桥基岩体稳定性就可以得到保证。设计采用的塔梁分离式悬索桥结构,以及各构筑物的布置是可行的,研究成果支撑了结构设计上的创新。隧道锚因围岩“夹持效应”而产生强大的抗拔能力。由于国内外大型悬索桥采用隧道式锚碇不多,对隧道锚碇围岩的岩石力学问题研究还不够深入,其承载能力可能被严重低估。  相似文献   

12.
不同层厚层状岩体对TBM开挖的影响   总被引:2,自引:1,他引:1  
 TBM的开挖效果在很大程度上受到节理间距的影响,TBM掘进速度随节理间距变小而增大,但节理间距过小,会造成掌子面岩体不稳,不利于TBM开挖。锦屏II级水电站引水隧洞洞段主要以层状大理岩为主,沿洞轴线方向大理岩层层厚变化较大,从几厘米到几米不等,层面是岩体中主要的不连续面,且层面与隧道轴线大角度相交。TBM的破岩过程主要受到高地应力条件和岩体层厚的影响。从TBM破岩机制角度,分析在高地应力条件下TBM在薄层面、中薄层面和厚层面大理岩层状岩体中的开挖表现,研究岩层厚度对TBM开挖的影响。  相似文献   

13.
超大跨度悬索桥隧道锚承载特性的岩石力学综合研究   总被引:6,自引:2,他引:4  
 针对四渡河特大桥宜昌岸隧道锚承载特性问题,采用基于岩石力学的综合研究方法,从围岩地质与力学特性、隧道锚1∶12实体模型试验及隧道锚承载特性数值分析等方面,对隧道锚与围岩岩体变形机制、时效特征及超载安全性等方面开展系统研究。结果表明,通过岩石力学试验及基于实体模型试验获得的隧道锚围岩弹塑性及流变参数符合实际;在设计水平下,隧道锚锭围岩变形在mm级水平;隧道锚极限抗拉拔力≥7.6倍设计载荷,满足锚固安全系数>4.0的设计要求;实桥隧道锚碇的长期安全系数≥2.6。通过工程实际施工过程中的监测实施,对研究成果和结论的合理性进行验证。研究技术路线及成果可供山区类似桥梁建设借鉴。  相似文献   

14.
岩体非协调变形对围岩中的应力和破坏的影响   总被引:1,自引:1,他引:0  
 讨论研究岩体非协调变形的重要性,提出岩石非协调变形的物理和数学含义,介绍研究岩体非协调变形的技术思路,阐述岩体非协调变形和协调变形的基本不同点。通过含微裂纹的岩体中开挖圆形洞室的计算实例,具体分析岩体非协调变形的研究对围岩应力和破坏的影响,确定非协调变形产生的自平衡封闭应力,研究微裂纹的密度和长度对自平衡封闭应力和岩体破坏的影响。  相似文献   

15.
深埋特长公路隧道岩爆预测综合研究   总被引:23,自引:4,他引:23  
岩爆预测一直是地下工程世界性难题之一。以台缙高速公路苍岭隧道的岩爆预测为例,从隧道区围岩的岩体特征和隧道区初始应力场两方面着手,通过工程地质调查研究和区域地质资料分析,对隧道区进行工程地质分类。划分隧道沿线各洞段隧道围岩类别,通过室内岩石力学试验,掌握隧道沿线围岩的物理力学特性;分析区域地震震源机制解、地应力实测资料,揭示区域构造地应力场环境。在研究过程中选取典型部位,采用水压致裂法实测工程区地应力的大小和方向。通过三维有限元反演工程区的初始应力场,在初始应力场和隧道围岩岩石力学性质研究的基础上,结合各洞段隧道断面开挖数值分析结果和现有国内外多种岩爆判别准则,对苍岭隧道岩爆发生的部位和等级进行预测,为制定合理的开挖支护方案提供依据。  相似文献   

16.
悬索桥隧道式锚碇系统力学行为研究   总被引:13,自引:3,他引:13  
根据悬索桥隧道式锚碇系统数值模拟结果,通过现场原位相似模型试验进行验证,研究了锚碇系统的力学行为特征、变形机制及稳定状态。结果表明,在主缆张拉和运营阶段,围岩对锚碇的夹持作用是以锚碇前底板为支点来抵抗锚碇体后部向上转动和向前滑移。岩锚初始预应力、自由段长度、外部荷载量值控制着锚索及锚碇在锚碇系统中参与的荷载贡献值和作用时机。锚碇体倾角、长度、放大角、接触界面粗糙度及结合程度影响锚碇位移和系统的稳定性。  相似文献   

17.
数字照相量测在岩石隧道模型试验中的应用研究   总被引:3,自引:1,他引:3  
在节理岩石隧道的三轴相似模型试验研究中,应用数字照相变形量测技术,采用自行研发的岩土工程数字照相量测软件系统PhotoInfor,对隧道围岩的变形破坏模式和不同围压作用下的变形破裂演变过程进行试验观测和定性、定量分析;针对隧道围岩破裂带量测难点问题,提出一种基于图像相关分析的围岩破裂带的准确识别新方法——图像钻孔法,通过在试验图像上沿着隧道周边径向设置多组pixel测点(一组测点称之为一个图像钻孔,各组测点间距为1pixel),利用PhotoInfor得到隧道围岩破裂带分布图,根据各组图像钻孔测点位移的突变位置,可对围岩破裂带的范围进行准确界定,同时发现,隧道围岩破裂带产生后破裂区内岩块再破裂的现象,这将有助于进一步深入分析岩体破坏后的力学行为。研究结果表明:数字照相量测不仅在砂土模型试验中应用效果良好,也是岩石相似模型试验中有效的变形量测手段,在岩土力学与岩土工程试验研究领域中可广泛进行推广应用。  相似文献   

18.
巨厚煤层三软回采巷道恒阻让压互补支护研究   总被引:2,自引:2,他引:0  
 针对沈阳清水煤矿第三系巨厚大地压软围岩煤层回采巷道开掘后支护失效严重、围岩大变形及4次返修无法稳定的现象,分析围岩塑性流变、非对称变形破坏、支护体与围岩大变形不协调等变形力学机制。提出采用恒阻大变形锚杆初次支护,在恒阻力作用下保护锚固体的承载力,通过恒阻锚杆的延伸多次释放变形能,将集中应力转移到深部,调动深部围岩承载能力,形成稳定的塑性承载圈;然后针对回采巷道变形特点采用顶板加强、两帮让压、底角加固的二次互补加强支护,形成适应三软巷道变形特征的围岩–支护协同承载体,将围岩变形速率控制在合理范围。基于该方法下提出的锚索+恒阻大变形锚杆+钢带+底角锚注联合支护设计,在该矿南二采区205工作面运输顺槽中使用后,顶板下沉降低75%,两帮收缩减小60%,底臌减小42%,巷道支护状况得到明显改善。实践证明,恒阻让压互补支护系统可有效控制三软巷道围岩稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号