共查询到18条相似文献,搜索用时 62 毫秒
1.
研究了温度、拉伸速度、原始晶粒度对GH4169合金高温拉伸性能和组织的影响。随拉伸速度的提高,合金的强度升高,塑性下降。原始粗晶组织的强度明显高于原始细晶的相应值,而塑性则相应不同程度下降。在动态再结晶温度以上的950—980℃,原始细晶组织试样适量变形区具有均匀的10—13级晶粒。890℃、950℃和1030℃适量变形部位在正常热处理过程中晶界δ相分别呈大量聚集针状、适量短棒与小颗粒状和少量小片与薄膜状的析出特征。在热模锻条件下,选用合适的该合金细晶坯料,950℃左右的模具温度,预计锻件可获得均匀细小的晶粒和良好的晶界状态与性能。 相似文献
2.
采用真空感应熔炼、锻造、轧制、热处理等工艺得到Nb元素含量分别为4.99%、5.13%、5.34%、5.50%的四种GH4169合金,研究了Nb元素含量对GH4169合金组织和拉伸性能的影响。结果表明:随着Nb元素含量的增加,GH4169合金两组室温屈服强度和抗拉强度的均值分别由1124.5 MPa和1402 MPa提高至1152.5 MPa和1489 MPa,两组650℃屈服强度和抗拉强度的均值分别由867.5 MPa和1035 MPa提高至975.0 MPa和1105 MPa,室温拉伸塑性略有降低,但650℃拉伸塑性几乎无变化,说明Nb元素含量的增加促进了主要强化相γ″的析出和长大,同时金相观察表明同样促进了晶界δ相的析出。 相似文献
3.
4.
5.
在最近引进的我国第一台高合金钢连轧生产线上研究了轧制变形量对GH4169合金棒材组织和性能的影响。结果表明:与传统的横列式轧机不同,连轧过程中合金的内升温效应较大。在本试验条件下,变形量过小,不利于合金晶粒细化,并在近表面部位残存未再结晶的原始拉长晶粒;如果变形量过大,则由于内升温引起终轧温度升高,晶粒显著粗化,并使晶界6相显著减少,从而大幅度降低高温塑性和持久寿命。只有变形量适当,才能在棒材各部位完成动态再结晶的同时,获得9级以上的细晶组织和合适的6相析出状态,使合金获得良好的综合性能。 相似文献
6.
7.
8.
研究了不同加热温度、终锻温度对GH4169合金Φ130mm径锻棒材组织和性能的影响。结果表明,加热温度和终锻温度过低时,棒材心部虽然获得了细于ASTM11级的晶粒,但表面甚至R/2处会因变形温度低于动态再结晶温度而残留部分原始拉长晶粒;同时δ相大量析出,不利于合金的综合性能。加热温度和终锻温度过高时,因原始晶粒在加热过程中过分长大,在变形过程中难以全部完成动态再结晶而残留部分原始拉长晶粒;同时δ相显著减少,合金的高温综合性能显著下降。在合适的加热温度和终锻温度下,棒材心部获得了均匀的10级晶粒,同时边缘获得了完全再结晶的11级晶粒,各部位δ相差异较小且基本呈颗粒状和短棒状在晶界均匀弥散分布,合金具有良好的低温、高温综合性能。 相似文献
9.
研究了不同的固溶温度和时间对GH4169合金晶粒度、δ相和硬度的影响。结果显示,当固溶时间保持在60 min,固溶温度升高至1 005℃时,部分区域δ相回溶较多,个别晶粒长大;固溶温度升高至1 020℃时,合金完成静态再结晶,且δ相基本上完全回溶,基体晶粒已经长大;试样的硬度随着固溶温度升高而逐渐降低。当固溶时间不变,固溶温度从1 040℃提高至1 080℃时,残留δ相继续回溶,晶粒也会继续长大;但在此固溶温度范围内,固溶时间的延长却并不会使δ相和晶粒发生明显变化。在高温固溶期间,当温度超过1 060℃或者时间超过9 min时,硬度不再随着固溶温度和时间的变化而发生有规律的变化。 相似文献
10.
11.
12.
13.
14.
对细晶GH4169合金的超塑性性能、超塑成形应用及超塑变形机理进行了研究.结果表明GH4169合金在温度为950℃、初始应变速率为1.6×100-4s-1~2.0×10 3s1的条件范围内,伸长率都高于275%,最高伸长率可达513%,表现出好的超塑性性能;利用超塑成形工艺制备出了飞行器用GH4169合金燃气集合器,并通过了30MPa液压压力、保压10min的打压试验;晶界滑移是GH4169合金超塑变形的主要变形机制,位错的滑移只起到一定的协调作用. 相似文献
15.
16.
本文研究了GH133合金的循环应力应变反应和低周疲劳性能,并作了位错结构和断口观察。通过对比拉压对称(R=-1)试验和恒定最大正应变(εmax=C)试验,证明平均拉应力起降低寿命的作用。位错结构观察证明,循环使共格γ′质点的相界处产生应力场,最终导致位错的萌生并运动,位错运动又进一步增殖位错。位错运动方式是变化的,由成对切割γ′质点到单位错切割γ′质点和位错绕过γ′质点。滑移带位错结构最终可以出现饱和的梯状结构,与典型的驻留带位错结构相似。晶界和双晶界附近位错密度高,具有位错胞结构,同时可以出现沿晶界裂纹和沿双晶界裂纹。
在循环交变作用下,材料的破坏过程可以分解为三个主要过程,即在循环作用下产生的材料变形行为的变化,疲劳裂纹的形成和疲劳裂纹不断扩展,直到一定的临界大小而发生最终破坏,这三个过程是不同的但又是相互联系的,宏观疲劳现象可以在此基础上作出适当的说明。对于含有共格γ′沉淀相的低层错能奥氏体合金,许多研究[1—8]指出,其循环反应往往是先循环硬化再循环软化,并具有面排列位错结构。关于循环软化现象,一些作者认为[8],共格沉淀相在位错往复切割下碎化而导致回溶,... 相似文献
在循环交变作用下,材料的破坏过程可以分解为三个主要过程,即在循环作用下产生的材料变形行为的变化,疲劳裂纹的形成和疲劳裂纹不断扩展,直到一定的临界大小而发生最终破坏,这三个过程是不同的但又是相互联系的,宏观疲劳现象可以在此基础上作出适当的说明。对于含有共格γ′沉淀相的低层错能奥氏体合金,许多研究[1—8]指出,其循环反应往往是先循环硬化再循环软化,并具有面排列位错结构。关于循环软化现象,一些作者认为[8],共格沉淀相在位错往复切割下碎化而导致回溶,... 相似文献
17.