首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the implementation of a viscoplastic material model of the Chaboche type in the framework of the finite element method (FEM). The equations of the used constitutive law, that incorporates isotropic hardening, back stress evolution with static recovery terms and drag stress evolution, are introduced. A representation of their numerical integration using the implicit backward Euler method under the assumption of small deformations and an isothermal formulation follows. The use of the backward Euler method leads to a nonlinear algebraic system of three equations, which is solved by a combination of the Pegasus method and a fixed-point iteration. After considering the accuracy of the presented integration algorithm in form of iso-error maps, the derivation of the consistent viscoplastic tangent operator is shown. The integration scheme and the calculation of the consistent viscoplastic tangent operator are implemented in the commercial finite element code ABAQUS, using the possibility of the user-defined material subroutine (UMAT). Finally a numerical example in form of a notched bar under tension is presented.  相似文献   

2.
A three-dimensional elastoplastic beam element being capable of incorporating large displacement and large rotation is developed and examined. Elastoplastic constitutive equations are applied to the beam element based upon the assumption of small deformational strain leading to a material formulation which is completely objective for the application of stress update procedures. The continuum-type equations of plastic model of J2 mixed hardening are transformed into the beam equations by satisfying beam hypotheses. An effective stress update algorithm is proposed to integrate elastoplastic rate equations by means of the so-called multistep method which is a method of successive control of residuals on yield surfaces. It avoids severe divergence when the displacement increments become large which is usual for the continuation methods. Material tangent stiffness matrix is derived by using consistent elastoplastic modulus resulting from the integration algorithm and is combined with geometric tangent stiffness matrix. Different from other elements, the present element is shear flexible and can satisfy the plasticity condition in a pointwise fashion. A great number of numerical examples are analysed and compared with the literature. The proposed beam element is verified to be not only quite accurate but also very effective for the analyses of pre-buckling and large deflection collapse of spatial framed structures.  相似文献   

3.
An algorithm for stable and accurate computations of stresses in finite element thermo-elastic-plastic and creep analysis of metals is presented. The effective-stress-function algorithm solves the governing equations of the inelastic constitutive behaviour by calculating the zero of the appropriate effective-stress-function: a functional relationship which involves as unknown only the effective stress. The derivation of the effective-stress-function for thermo-elasto-plasticity conditions, including creep, for 2-D and 3-D analysis is presented, and the algorithmic steps of the stress solution are discussed. For use in the stiffness matrix a tangent material stress–strain relationship is evaluated consistent with the effective-stress-function algorithm. The solution of some demonstrative problems shows the effectiveness of the solution procedure.  相似文献   

4.
Within the framework of the finite element method, this paper presents new algorithms implementing implicit stress integration and consistent tangent matrix calculations for an elasto-plastic model with rotational hardening. The sub-stepping technique is used for both the numerical integration of the constitutive relations and determination of the consistent tangent matrix in order to overcome the convergence difficulty arising from the complexity of the elasto-plastic model with rotational hardening. The integration of the constitutive relations and the computation of the consistent tangent matrix are incorporated into a unique procedure. Numerical tests are carried out and discussed to demonstrate the global accuracy and stability of the presented algorithms.  相似文献   

5.
6.
In this paper, constitutive integration for rate-independent, small deformation elastoplasticity is studied. Smooth yield surfaces and work/strain hardening are assumed. Both associative or non-associative flow rules are considered. An Euler backward algorithm is applied for constitutive integration. Tangent moduli that are consistent with the Euler backward algorithm, i.e. a so-called consistent tangent operator, are derived. Emphasis is placed on numerical implementation of the Eular backward algorithm into finite element codes using such a consistent tangent operator. In particular, a commercial code ANSYS is considered. Numerical examples, including materials sensitive and insensitive to hydrostatic stress, are used for the verification of the implementation. A comparison of the algorithmic performance to an explicit Euler forward algorithm is given and the superiority of the Euler backward algorithm is demonstrated.The work described in the present paper has been sponsored by The Research Council of Norway, The North Calotte Education and Research Council, Statoil and Norsk Hydro.  相似文献   

7.
A computational procedure to estimate the residual stress distributions and the limit angular speeds for avoiding secondary plastic deformation in nonlinearly strain hardening rotating elastic-plastic shafts is given. The model is based on von Mises’ yield condition, J 2 deformation theory and a Swift-type hardening law. The boundary value problem for the governing nonlinear differential equation is solved by a shooting method using Newton iterations with numerically approximated tangent. Solid as well as hollow cylinders are discussed and both fixed and free ends are taken into account.  相似文献   

8.
This paper deals with two main topics. The first one concerns the equivalence of stress algorithms, based on a Backward-Euler-step applied on viscoplastic models of Chaboche-type, and their elastoplastic counterpart. Generally, the stress algorithm yields a system of non-linear algebraic equations and the corresponding consistent tangent operator, occurring in the principle of virtual displacements, leads to a system of linear equations. This procedure can be obtained utilizing only numerical methods. The second topic concerns a special constitutive relation based on a kinematic hardening model using a sum of Armstrong/Frederick terms, which is equivalent to a multi-surface plasticity model. Applying this model a so-called problem-adapted stress algorithm is derived, where only one non-linear equation must be solved. This result is independent of the number of terms in the hardening model. Furthermore, only the viscoplastic algorithm must be implemented, since it includes the elastoplastic constitutive model as a special case. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
This article is focused on a new extended version of Gurson's model (J. Eng. Mater. Technol. 1977; 99 :2–15), its numerical integration scheme and its consistent tangent matrix being within an FE code. First, this new advanced Gurson model is proposed, which is an extension of the original to take into account plastic anisotropy and mixed (isotropic+kinematic) hardening. In this paper, only the growth phase of cavities is considered (the nucleation of new voids is ignored). Second, a new numerical algorithm for the integration of this new Gurson model is presented. The algorithm is implicit in all variables and is unconditionally stable. This algorithm is generic and could be used for other anisotropic yield functions and other hardening laws. Third, the consistent tangent matrix is computed in an explicit way by exact linearization of the constitutive equations. To check its efficiency and robustness, the proposed integration algorithm is compared, under some simplified assumptions and choices, with the algorithms of Aravas (Int. J. Numer. Meth. Engng 1987; 24 :1395–1416) and Kojic (Int. J. Numer. Meth. Engng 2002; 53 (12):2701–2720). The performance of the developed consistent modulus, compared to other techniques for the computation of the tangent matrix is assessed. The paper ends with numerical simulations of tensile tests on homogeneous and notched specimens. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper addresses the implementation of an integration algorithm for J2 elastoplasticity under arbitrary mixed stress–strain control. The proposed algorithm relies on the solution of a non‐linear scalar equation and generalizes an integration method already available for strain‐driven plane stress problems. Closed‐form analytical expressions are presented for both the continuous and the consistent forms of the mixed control tangent operator. The efficiency and accuracy of the application of the proposed algorithm to several mixed stress–strain control cases (including plane stress and beam theory problems) are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The paper presents equations and algorithms for numerical computation of elasto-plastic and elasto-viscoplastic constitutive parameter sensitivity problems. The general integration idea is based on the return-mapping algorithm. Two viscoplastic constitutive models are discussed in details: the overstress (Perzyna) model and the power law strain and strain-rate hardening model. The use of the consistent tangent operator is shown to be essential for the accuracy of the sensitivity analysis. A possible discontinuity of sensitivity at the transition (yield limit) point is discussed. It is concluded that in principle the nonuniqueness of the sensitivity solutions at such points does not invalidate the general idea of sensitivity calculations. A number of numerical examples illustrate the theoretical considerations.The paper was supported by the Polish National Committee for Scientific Research (KBN) with grant no. 3 P404 018 04.Dedicated to J. C. Simo  相似文献   

12.
An implicit objective stress update algorithm is proposed for a hypoelastic–viscoplastic model. A thermal/dynamic yield function, which is derived based on the thermal activation analysis and dislocation interaction mechanisms, is used, along with the Consistency approach and the framework of additive viscoplasticity, in deriving the proposed model for fcc metals. The corotational formulation approach is utilized in developing the proposed model in the finite deformation field. For the case of the Newton–Raphson iteration method, a new expression for the consistent (algorithmic) tangent stiffness matrix of rate‐dependent metals is derived by direct linearization of the stress update algorithm. Finite element simulations are performed by implementing the proposed viscoplasticity constitutive models in the commercial finite element program ABAQUS. Numerical implementation for a simple tensile problem is used for validating the material parameters of the OFHC Copper under low and high strain rates and temperatures. The numerical results of the adiabatic true stress–true strain curves compare very well with the experimental data. The effectiveness of the present approach is tested by studying strain localization in a simple plane strain problem. Results indicate excellent performance of the present framework in describing the strain localization problem and in obtaining mesh‐independent results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a time‐integration method for a viscoplastic physics‐based polymer model at finite strains. The macromolecular character of the model resides in (i) the viscoplastic law based on a double‐kink molecular mechanism, and (ii) a full chain network model inspired by rubber elasticity to describe the large‐strain orientation hardening. A back stress enters the constitutive model formulation. Essential aspects of a three‐dimensional finite‐element implementation are outlined, the main novelty being in the back stress formulation. The computational efficiency and accuracy of the algorithm are examined in a series of parameter studies. In addition, because a co‐rotational formulation of the constitutive equations is employed using the Jaumann rate in the hypoelastic equation and the back stress evolution equation a detailed analysis of stress oscillations is carried out up to very large strains in simple shear. Subsequently, three‐dimensional FE analyses of compression with friction and instability propagation in tension are used as a means to demonstrate the robustness of the implementation and the potential occurrence of stress oscillations and shear bands in large‐strain analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The field-boundary-element method naturally admits the solution algorithm in the incompressible regimes of fully developed plastic flow. This is not the case with the generally popular finite-element method, without further modifications to the method such as reduced integration or a mixed method for treating the dilatational deformation. The analyses by the field-boundary-element method for geometric and material non-linear problems are generally carried out by an incremental algorithm, where the velocities (or displacement increments) on the boundary are treated as the primary variables and an initial strain iteration method is commonly used to obtain the state of equilibrium. For problems such as buckling and diffused tensile necking, involving very large strains, such a solution scheme may not be able to capture the bifurcation phenomena, or the convergence will be unacceptably slow when the post-bifurcation behaviour needs to be analysed. To avoid this predicament, a full tangent stiffness field-boundary-element formulation which takes the initial stress–velocity gradient (displacement gradient) coupling terms accurately into account is presented in this paper. Here, the velocity field both inside and on the boundary are treated as primary variables. The large strain plasticity constitutive equation employed is based on an endochronic model of combined isotropic/kinematic hardening plasticity using the concepts of material director triad and the associated plastic spin. A generalized mid-point radial return algorithm is presented for determining the objective increments of stress from the computed velocity gradients. Numerical results are presented for problems of diffuse necking, involving very large strains and plastic instability, in initially perfect elastic–plastic plates under tension. These results demonstrate the clear superiority of the full tangent stiffness algorithm over the initial strain algorithm, in the context of the integral equation formulations for large strain plasticity.  相似文献   

15.
A novel, accurate, and computationally efficient integration approach is developed to integrate small strain viscoplastic constitutive equations involving nonlinear coupled first-order ordinary differential equations. The developed integration scheme is achieved by a combination of the implicit backward Euler difference approximation and the implicit asymptotic integration. For the uniaxial loading case, the developed integration scheme produces accurate results irrespective of time steps. For the multiaxial loading case, the accuracy and computational efficiency of the developed integration scheme are better than those of either the implicit backward Euler difference approximation or the implicit asymptotic integration. The simplicity of the developed integration scheme is equivalent to that of the implicit backward Euler difference approximation since it also reduces the solution of integrated constitutive equations to the solution of a single nonlinear equation. The algorithm tangent constitutive matrix derived for the developed integration scheme is consistent with the integration algorithm and preserves the quadratic convergence of the Newton–Raphson method for global iterations.  相似文献   

16.
Integration of stress-strain-time relationship is a key issue for the application of elasto-viscoplastic models to engineering practice. This article presents a novel adaptive substepping cutting-plane time integration scheme for elasto-viscoplastic models keeping the advantage of original cutting-plane (OCP) with only the first derivatives of loading surface required. The deficiency of OCP time integration algorithm is first discussed taking a simple overstress theory based elasto-viscoplastic modified Cam-Clay model (EVP-MCC) as example. To overcome this, a new algorithm is developed with three features: (1) an evolution function for the hardening variable of dynamic loading surface is innovatively deduced for the Taylor series approximation, (2) the elastic predictor is modified to account for the initial viscoplastic strain rate with more accuracy, and (3) a new adaptive substepping technique for restricting simultaneously both strain and time incremental sizes based on the overstress distance is proposed. For easy understanding, the proposed algorithm is first presented for one-dimensional condition, and then extended to three-dimensional condition. The new integrated EVP-MCC model using the proposed algorithm is examined by simulating laboratory tests at both levels of integration point and finite element with a good performance in terms of accuracy and convergence.  相似文献   

17.
The present study introduces a time‐integration algorithm for solving a non‐linear viscoelastic–viscoplastic (VE–VP) constitutive equation of isotropic polymers. The material parameters in the constitutive models are stress dependent. The algorithm is derived based on an implicit time‐integration method (Computational Inelasticity. Springer: New York, 1998) within a general displacement‐based finite element (FE) analysis and suitable for small deformation gradient problems. Schapery's integral model is used for the VE responses, while the VP component follows the Perzyna model having an overstress function. A recursive‐iterative method (Int. J. Numer. Meth. Engng 2004; 59 :25–45) is employed and modified to solve the VE–VP constitutive equation. An iterative procedure with predictor–corrector steps is added to the recursive integration method. A residual vector is defined for the incremental total strain and the magnitude of the incremental VP strain. A consistent tangent stiffness matrix, as previously discussed in Ju (J. Eng. Mech. 1990; 116 :1764–1779) and Simo and Hughes (Computational Inelasticity. Springer: New York, 1998), is also formulated to improve convergence and avoid divergence. Available experimental data on time‐dependent and inelastic responses of high‐density polyethylene are used to verify the current numerical algorithm. The time‐integration scheme is examined in terms of its computational efficiency and accuracy. Numerical FE analyses of microstructural responses of polyethylene reinforced with elastic particle are also presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
为适当降低杆系结构弹塑性分析的计算量,该文假设单元塑性变形集中于单元端部。在单元端部截面上,将截面分割为若干小块面积,用小块面积中心处材料的弹塑性性能代替整个小块面积的弹塑性性能。通过对小块面积弹塑性性能的分析,得出端部截面的弹塑性刚度,再将其与单元内部弹性部分的截面刚度沿杆长进行Gauss-Lobatto积分,由此获得梁单元的弹塑性刚度矩阵。该文对小面积中心点采用基于材料应变等向强化的弹塑性本构关系,为准确分析杆端截面小块面积的弹塑性应力状态,该文提出了有效的应力调整算法以修正计算过程中偏离屈服面的应力值。数值算例表明,该文方法准确、高效、可靠。  相似文献   

19.
Rate-independent plasticity and viscoplasticity in which the boundary of the elastic domain is defined by an arbitrary number of yield surfaces intersecting in a non-smooth fashion are considered in detail. It is shown that the standard Kuhn-Tucker optimality conditions lead to the only computationally useful characterization of plastic loading. On the computational side, an unconditionally convergent return mapping algorithm is developed which places no restrictions (aside from convexity) on the functional forms of the yield condition, flow rule and hardening law. The proposed general purpose procedure is amenable to exact linearization leading to a closed-form expression of the so-called consistent (algorithmic) tangent moduli. For viscoplasticity, a closed-form algorithm is developed based on the rate-independent solution. The methodology is applied to structural elements in which the elastic domain possesses a non-smooth boundary. Numerical simulations are presented that illustrate the excellent performance of the algorithm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号