首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian DNA ligases   总被引:1,自引:0,他引:1  
DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-alpha forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-beta, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.  相似文献   

2.
Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joining activity. This minor DNA joining activity, which contributes 5-10% of the total cellular DNA joining activity, forms a 90 kDa enzyme-adenylate intermediate which, unlike the Cdc9 enzyme-adenylate intermediate, reacts with an oligo (pdT)/poly (rA) substrate. The levels of the minor DNA joining activity are not altered by mutation or by overexpression of the CDC9 gene. Furthermore, the 90 kDa polypeptide is not recognized by a Cdc9 antiserum. Since this minor species does not appear to be a modified form of Cdc9 DNA ligase, it has been designated as S. cerevisiae DNA ligase II. Based on the similarities in polynucleotide substrate specificity, this enzyme may be the functional homolog of mammalian DNA ligase III or IV.  相似文献   

3.
Yeast DNA ligase IV mediates non-homologous DNA end joining   总被引:2,自引:0,他引:2  
The discovery of homologues from the yeast Saccharomyces cerevisiae of the human Ku DNA-end-binding proteins (HDF1 and KU80) has established that this organism is capable of non-homologous double-strand end joining (NHEJ), a form of DNA double-strand break repair (DSBR) active in mammalian V(D)J recombination. Identification of the DNA ligase that mediates NHEJ in yeast will help elucidate the function of the four mammalian DNA ligases in DSBR, V(D)J recombination and other reactions. Here we show that S. cerevisiae has two typical DNA ligases, the known DNA ligase I homologue CDC9 and the previously unknown DNA ligase IV homologue DNL4. dnl4 mutants are deficient in precise and end-processed NHEJ. DNL4 and HDF1 are epistatic in this regard, with the mutation of each having equivalent effects. dnl4 mutants are complemented by overexpression of Dnl4 but not of Cdc9, and deficiency of Dnl4 alone does not impair either cell growth or the Cdc9-mediated responses to ionizing and ultraviolet radiation. Thus, S. cerevisiae has two distinct and separate ligation pathways.  相似文献   

4.
Sequence analysis of the Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV) genome identified an open reading frame (ORF) encoding a 548-amino-acid (62-kDa) protein that showed 35% amino acid sequence identity with vaccinia virus ATP-dependent DNA ligase. Ligase homologs have not been reported from other baculoviruses. The ligase ORF was cloned and expressed as an N-terminal histidine-tagged fusion protein. Incubation of the purified protein with [alpha-32P]ATP resulted in formation of a covalent enzyme-adenylate intermediate which ran as a 62-kDa labeled band on a sodium dodecyl sulfate-polyacrylamide gel. Loss of the radiolabeled band occurred upon incubation of the intermediate with pyrophosphate, poly(dA) . poly(dT)12-18, or poly(rA) . poly(dT)12-18, characteristics of a DNA ligase II or III. The protein was able to ligate a double-stranded synthetic DNA substrate containing a single nick and inefficiently ligated a 1-nucleotide (nt) gap but did not ligate a 2-nt gap. It was able to ligate short, complementary overhangs but not blunt-ended double-stranded DNA. In a transient DNA replication assay employing six plasmids containing the LdMNPV homologs of the essential baculovirus replication genes, a plasmid containing the DNA ligase gene was neither essential nor stimulatory. All of these results are consistent with the activity of type III DNA ligases, which have been implicated in DNA repair and recombination.  相似文献   

5.
NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate.  相似文献   

6.
A conserved catalytic core of the ATP-dependent DNA ligases is composed of an N-terminal domain (domain 1, containing nucleotidyl transferase motifs I, III, IIIa and IV) and a C-terminal domain (domain 2, containing motif VI) with an intervening cleft. Motif V links the two structural domains. Deletion analysis of the 298 amino acid Chlorella virus DNA ligase indicates that motif VI plays a critical role in the reaction of ligase with ATP to form ligase-adenylate, but is dispensable for the two subsequent steps in the ligation pathway; DNA-adenylate formation and strand closure. We find that formation of a phosphodiester at a pre-adenylated nick is subject to a rate limiting step that does not apply during the sealing of nicked DNA by ligase-adenylate. This step, presumably conformational, is accelerated or circumvented by deleting five amino acids of motif VI. The motif I lysine nucleophile (Lys27) is not required for strand closure by wild-type ligase, but this residue enhances the closure rate by a factor of 16 when motif VI is truncated. We find that a more extensively truncated ligase consisting of only N-terminal domain 1 and motif V is inert in ligase--adenylate formation, but competent to catalyze strand closure at a pre-adenylated nick. These results suggest that different enzymic catalysts facilitate the three steps of the DNA ligase reaction.  相似文献   

7.
Nonhomologous DNA end joining (NHEJ) is the major pathway for repairing double-strand DNA breaks. V(D)J recombination is a double-strand DNA breakage and rejoining process that relies on NHEJ for the joining steps. Here we show that the targeted disruption of both DNA ligase IV alleles in a human pre-B cell line renders the cells sensitive to ionizing radiation and ablates V(D)J recombination. This phenotype can only be reversed by complementation with DNA ligase IV but not by expression of either of the remaining two ligases, DNA ligase I or III. Hence, DNA ligase IV is the activity responsible for the ligation step in NHEJ and in V(D)J recombination.  相似文献   

8.
Here we demonstrate that the Saccharomyces cerevisiae DNA ligase activity, which we previously designated DNA ligase II, is encoded by the genomic DNA sequence YOR005c. Based on its homology with mammalian LIG4, this yeast gene has been named DNL4 and the enzyme activity renamed Dnl4. In agreement with others, we find that DNL4 is not required for vegetative growth but is involved in the repair of DNA double-strand breaks by non-homologous end joining. In contrast to a previous report, we find that a dnl4 null mutation has no effect on sporulation efficiency, indicating that Dnl4 is not required for proper meiotic chromosome behavior or subsequent ascosporogenesis in yeast. Disruption of the DNL4 gene in one strain, M1-2B, results in temperature-sensitive vegetative growth. At the restrictive temperature, mutant cells progressively lose viability and accumulate small, nucleated and non-dividing daughter cells which remain attached to the mother cell. This novel temperature-sensitive phenotype is complemented by retransformation with a plasmid-borne DNL4 gene. Thus, we conclude that the abnormal growth of the dnl4 mutant strain is a synthetic phenotype resulting from Dnl4 deficiency in combination with undetermined genetic factors in the M1-2B strain background.  相似文献   

9.
ATP-dependent DNA ligases are essential enzymes in both DNA replication and DNA repair processes. Here we report a functional characterization of the T4 DNA ligase. One N-terminal and two C-terminal deletion mutants were expressed in Escherichia coli as histidine- tagged proteins. An additional mutant bore a substitution of Lys159 in the active site that abolished ATP binding. All the proteins were tested in biochemical assays for ATP-dependent self-adenylation, DNA binding, nick joining, blunt-end ligation and AMP- dependent DNA relaxation. From this analysis we conclude that binding to DNA is mediated by sequences at both protein ends and plays a key role in the reaction. The enzyme establishes two different complexes with DNA: (i) a transient complex (T.complex) involving the adenylated enzyme; (ii) a stable complex (S.complex) requiring the deadenylated T4 DNA ligase. The formation of an S. complex seems to be relevant during both blunt-end ligation and DNA relaxation. Moreover the inactive His-K159L substitution mutant, although unable to self-adenylate, still possesses AMP-dependent DNA nicking activity.  相似文献   

10.
The interaction between human DNA polymerase beta (pol beta) and DNA ligase I, which appear to be responsible for the gap filling and nick ligation steps in short patch or simple base excision repair, has been examined by affinity chromatography and analytical ultracentrifugation. Domain mapping studies revealed that complex formation is mediated through the non-catalytic N-terminal domain of DNA ligase I and the N-terminal 8-kDa domain of pol beta that interacts with the DNA template and excises 5'-deoxyribose phosphate residue. Intact pol beta, a 39-kDa bi-domain enzyme, undergoes indefinite self-association, forming oligomers of many sizes. The binding sites for self-association reside within the C-terminal 31-kDa domain. DNA ligase I undergoes self-association to form a homotrimer. At temperatures over 18 degreesC, three pol beta monomers attached to the DNA ligase I trimer, forming a stable heterohexamer. In contrast, at lower temperatures (<18 degreesC), pol beta and DNA ligase I formed a stable 1:1 binary complex only. In agreement with the domain mapping studies, the 8-kDa domain of pol beta interacted with DNA ligase I, forming a stable 3:3 complex with DNA ligase I at all temperatures, whereas the 31-kDa domain of pol beta did not. Our results indicate that the association between pol beta and DNA ligase I involves both electrostatic binding and an entropy-driven process. Electrostatic binding dominates the interaction mediated by the 8-kDa domain of pol beta, whereas the entropy-driven aspect of interprotein binding appears to be contributed by the 31-kDa domain.  相似文献   

11.
The covalent rejoining of DNA ends at single-stranded or double-stranded DNA breaks is catalyzed by DNA ligases. Four DNA ligase activities (I-IV) have been identified in mammalian cells [1]. It has recently been demonstrated that DNA ligase IV interacts with and is catalytically stimulated by the XRCC4 protein [2,3], which is essential for DNA double-strand break repair and the genomic rearrangement process of V(D)J recombination [4]. Together with the finding that the yeast DNA ligase IV homologue is essential for nonhomologous DNA end joining [5-7], this has led to the hypothesis that mammalian DNA ligase IV catalyzes ligation steps in both of these processes [8]. DNA ligase IV is characterized by a unique carboxy-terminal tail comprising two BRCT (BRCA1 carboxyl terminus) domains. BRCT domains were initially identified in the breast cancer susceptibility protein BRCA1 [9], but are also found in other DNA repair proteins [10]. It has been suggested that DNA ligase IV associates with XRCC4 via its tandem BRCT domains and that this may be a general model for protein-protein interactions between DNA repair proteins [3]. We have performed a detailed deletional analysis of DNA ligase IV to define its XRCC4-binding domain and to characterize regions essential for its catalytic activity. We find that a region in the carboxy-terminal tail of DNA ligase IV located between rather than within BRCT domains is necessary and sufficient to confer binding to XRCC4. The catalytic activity of DNA ligase IV is affected by mutations within the first two-thirds of the protein including a 67 amino-acid amino-terminal region that was previously thought not to be present in human DNA ligase IV [11].  相似文献   

12.
An inhibitor for DNA ligase I has recently been purified from human cells. This inhibitor of 55-75 kDa forms a reversible complex with DNA ligase I, but has no effect on DNA ligase II and T4 DNA ligase, suggesting that it may play a regulatory role for DNA replication and repair. This report shows that the inhibitor was sensitive to heating at 52 degrees C and to trypsin treatment, indicating that it is a heat-labile protein. The inhibitor affected the ligation of double- and single-strand breaks in natural and synthetic DNA, but had no effect on the formation of the ligase-AMP complex and on the subsequent reaction following the formation of the AMP-DNA complex. These data indicate that the major mechanism of action for the inhibitor is the blocking of the second step of the reaction, in which the AMP moiety is transferred from the ligase-AMP to DNA. The site of interaction for the enzyme is therefore localized in a domain associated with the DNA binding or the AMP-transferring function.  相似文献   

13.
Bacterial DNA polymerase III (family C DNA polymerase), the principal chromosomal replicative enzyme, is known to occur in at least three distinct forms which have provisionally been classified as class I ( Escherichia coli DNA pol C-type), class II ( Bacillus subtilis DNA pol C-type) and class III (cyanobacteria DNA pol C-type). We have identified two family C DNA polymerase sequences in the hyperthermophilic bacterium Thermotoga maritima. One DNA polymerase consisting of 842 amino acid residues and having a molecular weight of 97 213 belongs to class I. The other one, consisting of 1367 amino acid residues and having a molecular weight of 155 361, is a member of class II. Comparative sequence analyses suggest that the class II DNA polymerase is the principal DNA replicative enzyme of the microbe and that the class I DNA polymerase may be functionally inactive. A phylogenetic analysis using the class II enzyme indicates that T.maritima is closely related to the low G+C Gram-positive bacteria, in particular to Clostridium acetobutylicum, and mycoplasmas. These results are in conflict with 16S rRNA-based phylogenies, which placed T.maritima as one of the deepest branches of the bacterial tree.  相似文献   

14.
A new DNA polymerase activity was identified and purified to near homogeneity from extracts of mitotic and meiotic cells of the yeast Saccharomyces cerevisiae. This activity increased at least 5-fold during meiosis, and it was shown to be associated with a 68-kDa polypeptide as determined by SDS-polyacrylamide gel electrophoresis. This new DNA polymerase did not have any detectable 3'-->5' exonuclease activity and preferred small gapped DNA as a template-primer. The activity was inhibited by dideoxyribonucleoside 5'-triphosphates and N-ethylmaleimide but not by concentrations of aphidicolin which completely inhibit either DNA polymerases I (alpha), II (epsilon), or III (delta). Since no polypeptide(s) in the extensively purified DNA polymerase fractions cross-reacted with antibodies raised against yeast DNA polymerases I, II, and III, we called this enzyme DNA polymerase IV. The DNA polymerase IV activity increased at least 10-fold in a yeast strain overexpressing the gene product predicted from the YCR14C open-reading frame (identified on S. cerevisiae chromosome III and provisionally called POLX), while no activity was detected in a strain where POLX was deleted. These results strongly suggest that DNA polymerase IV is encoded by the POLX gene and is a probable homolog of mammalian DNA polymerase beta.  相似文献   

15.
Degradation of a protein via the ubiquitin system involves two discrete steps, conjugation of ubiquitin to the substrate and degradation of the adduct. Conjugation follows a three-step mechanism. First, ubiquitin is activated by the ubiquitin-activating enzyme, E1. Following activation, one of several E2 enzymes (ubiquitin-carrier proteins or ubiquitin-conjugating enzymes, UBCs) transfers ubiquitin from E1 to the protein substrate that is bound to one of several ubiquitin-protein ligases, E3s. These enzymes catalyze the last step in the process, covalent attachment of ubiquitin to the protein substrate. The binding of the substrate to E3 is specific and implies that E3s play a major role in recognition and selection of proteins for conjugation and subsequent degradation. So far, only a few ligases have been identified, and it is clear that many more have not been discovered yet. Here, we describe a novel ligase that is involved in the conjugation and degradation of non "N-end rule" protein substrates such as actin, troponin T, and MyoD. This substrate specificity suggests that the enzyme may be involved in degradation of muscle proteins. The ligase acts in concert with E2-F1, a previously described non N-end rule UBC. Interestingly, it is also involved in targeting lysozyme, a bona fide N-end substrate that is recognized by E3 alpha and E2-14 kDa. The novel ligase recognizes lysozyme via a signal(s) that is distinct from the N-terminal residue of the protein. Thus, it appears that certain proteins can be targeted via multiple recognition motifs and distinct pairs of conjugating enzymes. We have purified the ligase approximately 200-fold and demonstrated that it is different from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. The native enzyme has an apparent molecular mass of approximately 550 kDa and appears to be a homodimer. Because of its unusual size, we designated this novel ligase E3L (large). E3L contains an -SH group that is essential for its activity. Like several recently described E3 enzymes, including E6-AP and the ligase involved in the processing of p105, the NF-kappa B precursor, the novel ligase is found in mammalian tissues but not in wheat germ.  相似文献   

16.
The BRCT domain (for BRCA1 carboxyl terminus) is a protein motif of unknown function, comprising approximately 100 amino acids in five conserved blocks denoted A-E. BRCT domains are present in the tumour suppressor protein BRCA1 [1-3], and the domain is found in over 40 other proteins, defining a superfamily that includes DNA ligase III-alpha and the essential human DNA repair protein XRCC1. DNA ligase III-alpha and XRCC1 interact via their carboxyl termini, close to or within regions that contain a BRCT domain [4]. To examine whether the primary role of the carboxy-terminal BRCT domain of XRCC1 (denoted BRCT II) is to mediate the interaction with DNA ligase III-alpha, we identified the regions of the domain that are required and sufficient for the interaction. An XRCC1 protein in which the conserved D-block tryptophan was disrupted by point mutation retained the ability to interact with DNA ligase III-alpha, so this tryptophan must mediate a different, although conserved, role. XRCC1 in which the weakly conserved C-block was mutated lost the ability to interact with DNA ligase III-alpha. Moreover, 20 amino acids spanning the C-block of BRCT II conferred full DNA ligase III-alpha binding activity upon an unrelated polypeptide. An XRCC1 protein in which this 20mer was deleted could not maintain normal levels of DNA ligase III-alpha in transfected rodent cells, a phenotype associated with defective repair [5]. In summary, these data demonstrate that a BRCT domain can mediate a biologically important protein-protein interaction, and support the existence of additional roles.  相似文献   

17.
Apurinic/apyrimidinic (AP) sites occur frequently in DNA as a result of spontaneous base loss or following removal of a damaged base by a DNA glycosylase. The action of many AP endonuclease enzymes at abasic sites in DNA leaves a 5'-deoxyribose phosphate (dRP) residue that must be removed during the base excision repair process. This 5'-dRP group may be removed by AP lyase enzymes that employ a beta-elimination mechanism. This beta-elimination reaction typically involves a transient Schiff base intermediate that can react with sodium borohydride to trap the DNA-enzyme complex. With the use of this assay as well as direct 5'-dRP group release assays, we show that T4 DNA ligase, a representative ATP-dependent DNA ligase, contains AP lyase activity. The AP lyase activity of T4 DNA ligase is inhibited in the presence of ATP, suggesting that the adenylated lysine residue is part of the active site for both the ligase and lyase activities. A model is proposed whereby the AP lyase activity of DNA ligase may contribute to the repair of abasic sites in DNA.  相似文献   

18.
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

19.
Holliday junctions (four-way DNA junctions), formed during homologous recombination, are bound and resolved by junction-specific endonucleases to yield recombinant duplex DNA products. The junction-resolving enzymes are a structurally diverse class of proteins that nevertheless have many properties in common; in particular a high structure specificity for binding and metal-dependent, (frequently) sequence-specific cleavage activity. In Saccharomyces cerevisiae, the enzyme CCE1 is necessary for the resolution of recombining mitochondrial genomes, and in Schizosaccharomyces pombe the homologous protein YDC2 is thought to have a similar function. We have generated an inactive mutant of YDC2, D226N, that retains structure-specific junction binding and have analysed the interaction of this protein with the four-way DNA junction. YDC2 binds the four-way junction in two specific complexes (I and II), unfolding the stacked X-structure into a conformation where the arms extend to the four corners of a square. This structure is reminiscent of that of the free junction in the absence of metal ions and of the structures imposed on the Holliday junction by CCE1 and RuvA. DNase I probing reveals footprints specific for complexes I and II which extend from the junction centre on all four arms. No protection is observed with the small, hydrophobic probe DMS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号