首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
原子力显微镜(AFM)在光盘检测及其质量控制中的应用   总被引:5,自引:0,他引:5  
综述了原子力显微镜(AFM)在光盘质量检测中的应用.AFM能够在nm尺度上直接对光盘及其模板上的信息位几何结构的特征尺寸及其误差进行三维测量,从而可以建立生产工艺参数和信息位几何结构之间、信息位几何结构和盘片电气性能之间的关系,进而找出影响光盘质量的直接原因.用AFM进行光盘质量检测主要有三方面:盘片和模板表面的定性观测;信息位几何结构的半定量分析;信息位特征尺寸的统计分析.定性观测和半定量分析可以对盘片播放的高误差率、凹坑形态和块出错率、凸台形态及其表面粗糙度等参数进行有针对性的检测;而信息位特征尺寸的统计分析则可以对信息位几何结构的关键参数进行面向生产过程的统计分析.所得结论表明AFM在光盘质量检测过程中具有独特的优势.  相似文献   

2.
液压系统广泛应用于工程领域,提高功率密度是其重要发展方向,其中液压集成块轻量化设计是提高功率密度的有效手段.通过增材制造(AM)灵活的加工特性能使集成块重量降低,是高功率密度液压驱动的一种有效的设计方法,但目前增材制造加工的流道存在塌陷形变、尺寸精度低、内部流道粗糙度高等问题.以提升增材制造流道成型质量为研究目标,选区...  相似文献   

3.
Besides the solid free-form fabrication technology, milling operation is an alternative applicable method to make complex cooling channels conform to the surface of the mold cavity. This paper presents the U-shape milled groove conformal cooling channels and proposes the design optimization process in order to obtain an optimal cooling channels’ configuration and target mold temperature. The relation between the cycle averaged thermal behavior of the mold cavity and the two-dimensional configuration of cooling channels was first investigated thoroughly by an analytical method. Design of experiment and 2D simulation were done to obtain the mold wall temperature and to check the feasibility of the analytical method. The optimization process of the free-form conformal cooling channels is based on the combination of both analytical method and 3D CAE simulation. The analytical step relies on explicit mathematic formulas, so it can approach the neighboring optimal solution quickly. Subsequently, the three-dimensional heat transfer simulation is applied to fine-tune the optimization results. A case study for a plastic car fender was investigated to verify the feasibility of the proposed method. The results show that conformal cooling channel gives a uniform cooling, reducing the cooling time and increasing the molded part’s quality with less effort of plastic designers and high computational efficiency.  相似文献   

4.
Freeform complex surfaces have become an inevitable part of many devices to perform specific functions. Some of these components require nanolevel surface roughness value to meet the desired requirements in their applications. Finishing of freeform surfaces to nanometer surface roughness value is always difficult for any process. Rotational-magnetorheological abrasive flow finishing (R-MRAFF) process has been applied so far for finishing internal surfaces of relatively simple geometry. In this work, an attempt has been made to improve external topography of freeform surfaces using this process. Large hydrodynamic pressure coupled with magnetic fluid is the principal idea behind these experiments. A smooth mirror like finished surface is achieved with improved finishing rate (nanometer/min) by controlling two motions (axial and rotational) simultaneously on stainless steel workpiece similar to knee joint implant. Magnetorheological polishing fluid with different mesh sizes of abrasive particles and at different extrusion pressures is used to reduce final surface roughness value, to increase uniformity of surface finish on the freeform surface and to enhance finishing rate. Surface roughness ranging from 35 to 78 nm is achieved at various locations as compared to larger variation in Ra value obtained in the earlier research work.  相似文献   

5.
This experimental research use the method of abrasive flow machining (AFM) to evaluate the characteristics of various levels of roughness and finishing of the complex shaped micro slits fabricated by wire electrical discharge machining (Wire-EDM). An investigative methodology based on the Taguchi experimental method for the micro slits of biomedicine was developed to determine the parameters of AFM, including abrasive particle size, concentration, extrusion pressure and machining time. The parameters that influenced the machining quality of the micro slits were also analyzed. Furthermore, in the shape precision of the micro slit fabricated by wire-EDM and subsequently fine-finished by AFM was also elucidated using a scanning electron microscope (SEM). The significant machining parameters and the optimal combinations of the machining parameters were identified by ANOVA (analysis of variation) and the S/N (-to-noise) ratio response graph. ANOVA was proposed to obtain the surface finishing and the shape precision in this study.  相似文献   

6.
针对传统热冲压模具深孔对钻冷却系统冷却不均的现象,基于热冲压过程的多场耦合传热理论,提出热冲压模具随形冷却系统设计方法。利用Star-ccm+软件对热冲压冷却淬火过程进行热流固耦合模拟。以自主研发的彩虹电动汽车B-柱模具镶块为研究对象,对传统深孔对钻和新提出多种随形设计方案进行了冷却模拟分析。根据模拟结果,比较分析了不同冷却方案的冷却效果,并提出B柱模具镶块纵向随形冷却水道的优化方案,分析了优化前、后模面温度场的变化。提出运用覆膜砂3D打印造型结合传统铸造工艺的方法,制造具有随形冷却水道的热冲压模具。通过对比五种方案发现,采用纵向随形设计的热冲压模具,与冷却最差的平行随形设计相比,模面最大温度降低47.4%,模面平均温度降低40.9%,模面温度均匀性提高1.8%。根据纵向随形水道设计流程,将水道形状和位置参数R、H、r作为优化参数,模面温度场作为优化目标,对纵向随形水道进行优化,结果显示,优化后模面最大温度下降了49.8%,模面平均温度下降了46.8%,模面温度标准偏差下降了67.5%,模面温度均匀性提高了1.9%。因此,采用随形冷却的热冲压模具,有效地提高了生产加工效率和使用寿命,改善了热冲压件的平均强度和组织与力学性能的均匀性。  相似文献   

7.
Abrasive flow machining (AFM) is a multivariable finishing process which finds its use in difficult to finish surfaces on difficult to finish materials. Near accurate prediction of generated surface by this process could be very useful for the practicing engineers. Conventionally, regression models are used for such prediction. This paper presents the use of artificial neural networks (ANN) for modeling and simulation of response characteristics during AFM process in finishing of Al/SiCp metal matrix composites (MMCs) components. A generalized back-propagation neural network with five inputs, four outputs, and one hidden layer is designed. Based upon the experimental data of the effects of AFM process parameters, e.g., abrasive mesh size, number of finishing cycles, extrusion pressure, percentage of abrasive concentration, and media viscosity grade, on performance characteristics, e.g., arithmetic mean value of surface roughness (R a, micrometers), maximum peak–valley surface roughness height (R t, micrometers), improvement in R a (i.e., ΔR a), and improvement in R t (i.e., ΔR t), the networks are trained for finishing of Al/SiCp-MMC cylindrical components. ANN models are compared with multivariable regression analysis models, and their prediction accuracy is experimentally validated.  相似文献   

8.
The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the whole process is time consuming. In this paper, a nanoscale step height structure is fabricated by atomic layer deposition(ALD) and wet etching techniques. According to the traceable of the step height value, the fabrication process is controllable. Because ALD technology can grow a variety of materials, aluminum oxide(Al_2O_3) is used to fabricate the nanostep. There are three steps of Al_2O_3 in this structure including 8 nm, 18 nm and 44 nm. The thickness of Al_2O_3 film and the height of the step are measured by anellipsometer. The experimental results show that the thickness of Al_2O_3 film is consistent with the height of the step. The height of the step is measured by AFM. The measurement results show that the height is related to the number of cycles of ALD and the wet etching time. The bottom and the sidewall surface roughness are related to the wet etching time. The step height is calibrated by Physikalisch-Technische Bundesanstalt(PTB) and the results were 7.5±1.5 nm, 15.5±2.0 nm and 41.8±2.1 nm, respectively. This research provides a method for the fabrication of step height at nanoscale and the nanostep fabricated is potential used for standard references.  相似文献   

9.
A new precision finishing process called magnetorheological abrasive flow finishing (MRAFF), which is basically a combination of abrasive flow machining (AFM) and magnetorheological finishing (MRF), has been developed for nano-finishing of parts even with complicated geometry for a wide range of industrial applications. In this paper microstructure of the mixture of magnetic and abrasive particles in magnetorheological polishing fluid (MRPF) has been proposed, and normal force on the abrasive particles is calculated from the applied magnetic field. A model for the prediction of material removal and surface roughness achieved has also been presented. And, finally theoretical results are compared with the experimental data available in the literature, and they are found to agree well.  相似文献   

10.
面向激光增材制造钛合金表面的光整加工需求,设计出一种多磁极耦合旋转磁场光整加工装置来研究光整加工特性。基于ANSYS Maxwell仿真软件分析了光整加工装置的磁场强度分布。搭建了实验光整平台,分析了主轴转速、C轴转速和加工间隙对表面质量的影响。结果表明,在主轴转速500 r/min、C轴转速160 r/min和加工间隙0.7 mm的加工条件下,表面粗糙度Ra由5.991 μm下降至0793 μm。扫描电子显微镜(SEM)观测表明,光整后的钛合金表面沉积层消失,表面质量得到显著改善。  相似文献   

11.
Electrochemical micromachining (ECMM) is an advanced machining process for machining of electrically conducting materials. In the present work, a micro nozzle and a fluidic mixer having complex structures are made using masking technique by ECMM process. Mask is made of 50-μm transparent sheet and the micro nozzle and micro mixer are fabricated on an 800-μm thick copper sheet. The resulting rough inner walls and bottom surface of micro nozzle are finished using magnetorheological fluid-based finishing process. Surface finish of the nozzle is significantly improved after finishing. A comparison of width, depth, and surface roughness of the micro nozzle is also carried out before and after finishing. The mixing behavior of two fluids is visualized by microscope in micro mixer. The rough inner walls of the mixer’s channels act as obstructions and result in zigzag path of flowing fluid. Hence, mixing occurs at microscopic level because of rapid molecular diffusion.  相似文献   

12.

Experiments were conducted to evaluate the effect of temperature during magnetic abrasive finishing of Mg alloy bars. A magnetic abrasive finishing process is an unconventional finishing technique that has been used to achieve high-quality surfaces with dimensional accuracy. In this study, a Mg alloy bar, which is widely used in automobiles, aircraft, IT, and the defense industry, was chosen as a cylindrical workpiece. The workpiece was then finished with a magnetic abrasive finishing process at three different temperatures, i.e., a cryogenic temperature, room temperature, and high temperature. In the cryogenic temperature condition, liquid nitrogen and argon gas were used as the cryogenic cooling gases in the finishing process; the results from this treatment were compared with those obtained at room temperature and high temperature conditions. At the room temperature condition, the finishing process of the cylindrical workpiece was performed at 24 °C. To carry out the high temperature condition, a hot air dryer was used to maintain a finishing temperature of 112 °C. The experimental results show that the room and cryogenic temperatures could yield excellent performance in terms of the surface roughness. However, in terms of the removal weight and change in diameter, the high temperature condition was found to be superior. In the present research, the improvements of the surface roughness (Ra) at room temperature (24 °C) and cryogenic temperature (-120 °C) conditions were 84.21 % and 55 %, respectively.

  相似文献   

13.
A magnetorheological fluid-based process is developed for the internal surface finishing of ferromagnetic cylindrical workpiece. The existing finishing processes based on magnetorheological fluid are not equipped to finish the internal ferromagnetic cylindrical surface significantly as it obtained higher magnetic flux density than the MR polishing fluid. At present, magnetorheological fluid-based finishing tools are designed to ensure the maximum magnetic flux density always present on the outer finishing tool core surface as compared to internal surface of ferromagnetic cylindrical workpiece surface. To validate this present principal idea, the magnetostatic finite element analysis has been performed on the newly designed finishing tools. The preliminary experiments have also been conducted to evaluate the finishing performance with the two newly designed finishing tools. The percentage reduction in surface roughness (Ra) values with I-shaped tool core is found as 65–78% after 150 min of finishing, whereas, with rectangular shaped tool core is found as 78–81% after 90 min of finishing. The results clearly revealed that the present finishing tool with rectangular shaped core is more suitable for uniform significant finishing of ferromagnetic cylindrical internal workpiece than the I-shaped core. The developed process can be useful in finishing of cylindrical mold and dies, hydraulic cylinder, barrel for injection molding, etc.  相似文献   

14.
In this study, the topography of human topoisomerase I (TOPO I) on mica surfaces in air and in liquid has been studied by atomic force microscopy (AFM). The average height of TOPO I on mica surface in air measured by AFM was 2.59±0.32 nm. After adsorption of the 0.3 U/µl TOPO I on mica surfaces for 2 h, and then imaged in liquid by AFM, well‐separated single TOPO I was observed. The average height of TOPO I on mica surfaces in liquid measured by AFM was 2.93±0.42 nm. After adsorption of the 4 U/µl TOPO I on mica surfaces for 1.5 h, TOPO I monolayer can be formed. The produced TOPO I monolayer on mica was flat and exhibited good stability. SCANNING 31: 160–166, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Magnetic abrasive finishing (MAF) of alloy steel workpiece with unbounded magnetic abrasive particles (UMAPs) indicates that the surface finish in the range of nanometer can be achieved. Important controllable four process parameters have been identified which are as current to the electromagnet, machining gap, abrasive size (mesh number), and number of cycles. Experiments have been planned using design of experiments technique. Based upon the results of response surface methodology and analysis of variance (ANOVA), it is concluded that magnetic flux density that depends on current to the electromagnet and machining gap, is most influencing parameter followed by grain size and number of cycles. The surface roughness profile generated during the MAF process has been discussed. To understand the cutting mechanism of magnetic abrasive finishing process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the machined surfaces have been carried out. The correlation between surface finish and material removal has also been established.  相似文献   

16.
Three-type polymer electrodes such as poly(Th), poly(Th-AP) and poly(Th-AP-TAA) were fabricated, respectively, by electro-oxidative polymerization of thiophene (Th), mixture of Th and 2-aminophenol (AP), and mixture of Th, AP and 3-thiopheneacetic acid (TAA) on the surface of indium tin oxide (ITO) glass by cyclic voltammetry (CV). The polymer electrodes were electrodeposited by cycling the potential between -1.0 and +2.5V in acetonitrile containing 50mM tetrabutylammoniumhexafluorophosphate (TBAF(6)P). The surface morphology of polymer electrodes was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis. The surface morphology of the poly(Th) showed typical roughness and fractal-like growth patterns, and the morphologies of poly(Th-AP) and poly(Th-AP-TAA) were dramatically changed. The water contact angle at the poly(Th-AP-TAA) (23 degrees ) is lower in comparison to poly(Th) (47 degrees ). The functional groups (-OH) and carboxylic acid (-COOH) group play an important role. Horseradish peroxidase was loaded onto poly(Th-AP-TAA) surface and used to test the sensing of H(2)O(2).  相似文献   

17.
为了有效处理上海光源前端挡光器接收的高热负载,研究了挡光器的结构设计及其优化方法。选用高导热性、高强度的GlidCop AL-15制造挡光器吸收体,采用直接水冷和掠入射结构提高其热缓释能力。以对流换热系数和压力降为评价指标,选用佩图克方程和达尔西-韦斯巴赫方程优化冷却水路,通过热分析得到了不同参数下挡光器的温度和热应力分析结果,从而确定了挡光器的结构设计优化参数。优化后挡光器的水路直径为6mm,水路到光照面的距离为9mm,光照面接线处圆角≥2mm,且水路与光束方向基本平行。与初始结构相比,优化后挡光器的最高整体温度和最高冷却壁温度分别下降约8%和1/4,最大等效应力降低了1/2左右,完全满足上海光源前端部件的设计要求。目前,应用优化参数设计的挡光器已应用于上海光源实际工程中。  相似文献   

18.
针对磨料流加工异形曲面一致性较差的问题,提出通过设置相似模芯结构以改善剪切应力分布的状态,从而实现均匀化加工异形曲面的方法。根据磨料流的剪切率与黏度的关系建立了幂律模型,通过COMSOL Multiphysics软件的 CFD模块计算得到置入模芯时磨料介质在加工表面的速度、剪切率和剪切应力的分布。仿真与实验表明:置入相似的模芯后可形成等宽的流道,各曲面受到的剪切应力趋向一致。工件内壁表面粗糙度Ra最大差值由无模芯时的0.376μm降为置入模芯后的0.017μm。  相似文献   

19.
基于原子力显微镜的线宽粗糙度测量   总被引:1,自引:0,他引:1  
给出采用原子力显微镜(Atomic force microscope,AFM)测量线宽粗糙度(Line width roughness,LWR)的分析步骤。分析线宽和LWR及其偏差随刻线横截面位置的高度变化的关系,线宽及其偏差和LWR及其偏差随刻线横截面位置的高度值增加而减小。分别采用四种边缘提取算子提取了碳纳米管针尖AFM测量的刻线顶部线宽边缘,计算了刻线顶部线宽和LWR,顶部线宽和LWR测量结果对边缘提取算子不敏感。结合被测单晶硅台阶的顶表面和底表面加工方法,提出采用各扫描线轮廓高度相等的方法校正AFM压电驱动器的z向非线性。比较了采用普通氮化硅探针针尖、超尖针尖以及碳纳米管针尖AFM测量名义线宽为1 000 nm刻线LWR的结果,显示采用三种针尖的LWR测量结果存在差异,但考虑到AFM分辨率,可认为测量结果基本相同。因此,为更精确描述刻线边缘,必须提高AFM分辨率。  相似文献   

20.
4英寸×8英寸224系列复合挤出机能够用于两种不同聚合材料的挤出,适于生产大型热固性制品,同时结合其最佳的运转性能特点,因此可满足各种材料要求,既可满足制品的挠性要求又有耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号