首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
This paper focuses on the Cauchy problem of the d-dimensional incompressible Oldroyd-B type models for viscoelastic flow with fractional Laplacian dissipation, namely, with (?Δ)η1u and (?Δ)η2τ. For η112+d4, η2>0 and η1+η21+d2, we obtain the global regularity of strong solutions when the initial data (u0,τ0) are sufficiently smooth.  相似文献   

6.
In [1] a procedure for bias-free estimation of the autocorrelation function is introduced for equidistantly sampled data with randomly occurring samples being invalid. The method incorporates sample-and-hold interpolation of the missing data points. The occurring dynamic error of the primary estimate of the correlation function is treated by a deconvolution procedure with two parameters c0 and c1 with c0+2c1=1, which are the on-diagonal and the aside-diagonal parameters of a specific correction matrix (at all lag times except zero). The parameters c0 and c1 were obtained as a function of the probability α of a sample to be valid by numerical simulation. However, explicit expressions for the parameters c0(α)=12α+2α2 and c1(α)=1α1α2 can be derived, which might improve the usability of the deconvolution procedure in [1].  相似文献   

7.
We consider a micropolar fluid flow in a two-dimensional domain. We assume that the velocity field satisfies a non-linear slip boundary condition of friction type on a part of the boundary while the micro-rotation field satisfies non-homogeneous Dirichlet boundary conditions. We prove the existence and uniqueness of a solution. Then motivated by lubrication problems we assume that the thickness and the roughness of the domain are of order 0<ε<<1 and we study the asymptotic behaviour of the flow as ε tends to zero. By using the two-scale convergence technique we derive the limit problem which is totally decoupled for the limit velocity and pressure (v0,p0) on one hand and the limit micro-rotation Z0 on the other hand. Moreover we prove that v0, p0 and Z0 are uniquely determined via auxiliary well-posed problems.  相似文献   

8.
We present a finite volume method for Stokes problems using the isoparametric Q1Q0 element pair on quadrilateral meshes. To offset the lack of the infsup condition, a jump term of discrete pressure (stabilizing term) is added to the continuity approximation equation. Thus, we establish a stabilized finite volume scheme on quadrilateral meshes. Then, based on some superclose estimates, we derive the optimal error estimates in the H1- and L2-norms for velocity and in the L2-norm for pressure, respectively. Numerical examples are provided to illustrate our theoretical analysis. We emphasize that our work is the first time to propose and analyze a finite volume method for Stoke problems using isoparametric elements on quadrilateral meshes.  相似文献   

9.
10.
11.
The construction of finite element approximations in H(div,Ω) usually requires the Piola transformation to map vector polynomials from a master element to vector fields in the elements of a partition of the region Ω. It is known that degradation may occur in convergence order if non affine geometric mappings are used. On this point, we revisit a general procedure for the improvement of two-dimensional flux approximations discussed in a recent paper of this journal (Comput. Math. Appl. 74 (2017) 3283–3295). The starting point is an approximation scheme, which is known to provide L2-errors with accuracy of order k+1 for sufficiently smooth flux functions, and of order r+1 for flux divergence. An example is RTk spaces on quadrilateral meshes, where r=k or k?1 if linear or bilinear geometric isomorphisms are applied. Furthermore, the original space is required to be expressed by a factorization in terms of edge and internal shape flux functions. The goal is to define a hierarchy of enriched flux approximations to reach arbitrary higher orders of divergence accuracy r+n+1 as desired, for any n1. The enriched versions are defined by adding higher degree internal shape functions of the original family of spaces at level k+n, while keeping the original border fluxes at level k. The case n=1 has been discussed in the mentioned publication for two particular examples. General stronger enrichment n>1 shall be analyzed and applied to Darcy’s flow simulations, the global condensed systems to be solved having same dimension and structure of the original scheme.  相似文献   

12.
The motion of gravity-driven deformable droplets passing through a confining orifice in two-dimensional (2D) space is numerically studied by the phase-field-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) model, and the ratio of orifice-to-droplet diameter is less than 1. Droplets are placed just above a sink with an orifice in the middle, accelerate under gravity and encounter the orifice plate. In this work, we mainly consider the effects of the Bond number (Bo), orifice-to-droplet diameter ratio (r=dD), plate thickness (Ht), wettability (or contact angle) and the diameter ratio of two droplets (rd=D1D2) on the dynamic behavior of droplet through the orifice. The results show that these issues have great influences on the typical flow patterns (i.e., release and capture). With the decrease of contact angle, the droplet is more easily captured, and there exists a critical equilibrium contact angle θeq when the Bond number and the orifice-to-droplet diameter ratio as well as the thickness of the plate are specified. For the case with θ>θeq, the droplet can finally pass through the orifice, otherwise, the droplet cannot pass through the orifice. In addition, the droplet is more likely to pass through the orifice as the thickness of the obstacle increases. Actually, when the obstacle thickness is large enough, droplet breaks into three segments and a liquid slug is formed in a hydrophilic orifice. Finally, for the evolution of two droplets with a larger diameter ratio (rd=1.0), the combined droplet finally passes through the orifice due to greater inertia than the cases with rd=0 and rd=0.43. Besides, we also establish the relation r=0.5723Bo?13 which can be used to separate droplet release from capture at Ht=1.2mm.  相似文献   

13.
In this paper, we prove a novel result of the consistency error estimate with order O(h2) for EQ1rot element (see Lemma 2) on anisotropic meshes. Then, a linearized fully discrete Galerkin finite element method (FEM) is studied for the time-fractional nonlinear parabolic problems, and the superclose and superconvergent estimates of order O(τ+h2) in broken H1-norm on anisotropic meshes are derived by using the proved character of EQ1rot element, which improve the results in the existing literature. Numerical results are provided to confirm the theoretical analysis.  相似文献   

14.
This paper presents a fast singular boundary method (SBM) for three-dimensional (3D) Helmholtz equation. The SBM is a boundary-type meshless method which incorporates the advantages of the boundary element method (BEM) and the method of fundamental solutions (MFS). It is easy-to-program, and attractive to the problems with complex geometries. However, the SBM is usually limited to small-scale problems, because of the operation count of O(N3) with direct solvers or O(N2) with iterative solvers, as well as the memory requirement of O(N2). To overcome this drawback, this study makes the first attempt to employ the precorrected-FFT (PFFT) to accelerate the SBM matrix–vector multiplication at each iteration step of the GMRES for 3D Helmholtz equation. Consequently, the computational complexity can be reduced from O(N2) to O(NlogN) or O(N). Three numerical examples are successfully tested on a desktop computer. The results clearly demonstrate the accuracy and efficiency of the developed fast PFFT-SBM strategy.  相似文献   

15.
In this article, we study solitary-wave solutions of the nonlinear Benjamin–Bona–Mahony–Burgers(BBM–Burgers) equation based on a lumped Galerkin technique using cubic B- spline finite elements for the spatial approximation. The existence and uniqueness of solutions of the Galerkin version of the solutions have been established. An accuracy analysis of the Galerkin finite element scheme for the spatial approximation has been well studied. The proposed scheme is carried out for four test problems including dispersion of single solitary wave, interaction of two, three solitary waves and development of an undular bore. Then we propose a full discrete scheme for the resulting IVP. Von Neumann theory is used to establish stability analysis of the full discrete numerical algorithm. To display applicability and durableness of the new scheme, error norms L2, L and three invariants I1,I2 and I3 are computed and the acquired results are demonstrated both numerically and graphically. The obtained results specify that our new scheme ensures an apparent and an operative mathematical instrument for solving nonlinear evolution equation.  相似文献   

16.
This article investigates the influence of porosity on free and forced vibration characteristics of a nanoshell reinforced by graphene platelets (GPL). The material properties of piece-wise graphene-reinforced composites (GPLRCs) are assumed to be graded in the thickness direction of a cylindrical nanoshell and estimated using a nanomechanical model. In addition, because of imperfection of the current structure, three kinds of porosity distributions are considered. The nanostructure is modeled using modified strain gradient theory (MSGT) which is a size-dependent theory with three length scale parameters. The novelty of the current study is to consider the effects of porosity, GPLRC and MSGT on dynamic and static behaviors of the nanostructure. Considering three length scale parameters ( l0=5h, l1=3h, l2=5h ) in MSGT leads to a better agreement with MD simulation in comparison by other theories. Finally, effects of different factors on static and dynamic behaviors of the porous nanostructure are examined in detail.  相似文献   

17.
In this paper, under investigated is a generalized (3+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili (gCH-KP) equation, which describes the role of dispersion in the formation of patterns in liquid drops. With the help of the semi-inverse method, the Euler–Lagrange equation and Agrawal’s method, the time fractional gCH-KP equation is derived in the sense of Riemann–Liouville fractional derivatives. Further, the symmetry of the (3+1)-dimensional time fractional gCH-KP equation is studied by fractional order symmetry. Meanwhile, based on the new conservation theorem, the conservation laws of (3+1)-dimensional time fractional gCH-KP equation are constructed. Finally, the solutions to the equation are given via a bilinear method and the radial basis functions (RBFs) meshless approach.  相似文献   

18.
19.
This paper focuses on the unconditional stability and convergence of characteristics type methods for the time-dependent incompressible MHD equations. For this purpose, we introduce a new characteristics time-discrete system. The optimal error estimates in L2 and H1 norms for the typical modified characteristics finite element method unconditionally can be deduced, while the whole previous works require certain time-step restrictions. Some numerical experiments document performance of the characteristics type methods for the time-dependent incompressible MHD equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号