首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Power-to-gas and other chemicals-based storages are often suggested for energy systems with high shares of variable renewable energy. Here we study the North European power and district heat system with alternative long-term storage, the power-to-ammonia (P2A) technology. Assuming fully renewable power and heat sectors and large-scale electrification of road transport, we perform simultaneous optimization of capacity investments and dispatch scheduling of wind, solar, hydro and thermal power, energy storages as well as transmission, focusing on year 2050. We find that P2A has three major roles: it provides renewable feedstock to fertilizer industry and it contributes significantly to system balancing over both time (energy storage) and space (energy transfer). The marginal cost of power-based ammonia production in the studied scenarios varied between 431 and 528 €/t, which is in the range of recent ammonia prices. Costs of P2A plants were dominated by electrolysis. In the power and heat sector, with our cost assumptions, P2A becomes competitive compared to fossil natural gas only if gas price or CO2 emission price rises above 70 €/MWh or 200 €/tCO2.  相似文献   

2.
Recovery of heat from electrolysers is potentially interesting to increase the total system efficiency, reduce CO2 emissions, and increase the economic feasibility of both hydrogen and heat production. This study examines different designs for the utilisation of (waste) heat from a 2.5 MWel polymer electrolyte membrane (PEM) electrolyser. Redundancy is important in the design, to ensure safe operation regardless of the heat demand of the heat consumer. We analysed cases with local heat consumption (with/without a heat pump) and coupling with a district heating network (DHN). Overall, 14–15% of the electricity input to the stack can be utilised by a heat consumer, increasing the total system efficiency to 90% (HHV) with CO2-savings of 0.08 (DHN)-0.28 (direct use) tonne CO2/MWhheat, used. We performed a first-order techno-economic analysis showing that the levelized costs of the electrolyser heat (8.4–36.9 €/MWh) fall within the range of other industrial heat sources and below lower-temperature heat sources.  相似文献   

3.
This paper investigates the smart integration of a 500 ha microalgae culturing facility with a large scale coal power plant (758.6 MWe): a fraction of the CO2 contained in the coal plant flue gases is used for the algal cultivation, a fraction of the low-temperature flue gas heat available is used for the biomass drying, finally the produced biomass is co-fired in the coal plant. The produced algal biomass represents approximately 1% of the boiler heat input.Through the solution of energy and mass balances of each plant component, the overall system performances in terms of net energy ratio (NER) and CO2 emissions reduction are obtained. The computed NER (1.92) guarantees an energy harvest almost twice the energetic cost needed to produce the microalgal fuel. The total CO2 emissions are reduced of approximately 0.48%, identifying microalgae cofiring as a solution able to reduce the environmental impact of electricity generation. A simplified economic analysis has allowed an estimate of the algal system investment cost (about 235 k€ ha−1) and of the levelized cost of electricity (LCOE) (554.4 € MWh−1). A set of sensitivity analyses is finally performed to investigate the influence of the initial hypotheses on the results.  相似文献   

4.
《Energy》2005,30(13):2402-2412
The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50% of the electricity demand is produced in CHP, a number of future energy systems with CO2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power.  相似文献   

5.
We present possible steps for Germany's capital region for a pathway towards high-level renewable energy contributions. To this end, we give an overview of the current energy policy and status of electricity generation and demand of two federal states: the capital city Berlin and the surrounding state of Brandenburg. In a second step we present alternative, feasible scenarios with focus on the years 2020 and 2030. All scenarios were numerically evaluated in hourly time steps using a cost optimisation approach. The required installed capacities in an 80% renewables scenario in the year 2020 consist of 8.8 GW wind energy, 4.8 GW photovoltaics, 0.4 GWel bioenergy, 0.6 GWel methanation and a gas storage capacity of 180 GWhth. In order to meet a renewable electricity share of 100% in 2030, approximately 9.5 GW wind energy, 10.2 GW photovoltaics and 0.4 GWel bioenergy will be needed, complemented by a methanation capacity of about 1.5 GWel and gas storage of about 530 GWhth. In 2030, an additional 11 GWhel of battery storage capacity will be required. Approximately 3 GW of thermal gas power plants will be necessary to cover the residual load in both scenarios. Furthermore, we studied the transmission capacities of extra-high voltage transmission lines in a second simulation and found them to be sufficient for the energy distribution within the investigated region.  相似文献   

6.
Reliable and affordable future zero emission power, heat and transport systems require efficient and versatile energy storage and distribution systems. This paper answers the question whether for city areas, solar and wind electricity together with fuel cell electric vehicles as energy generators and distributors and hydrogen as energy carrier, can provide a 100% renewable, reliable and cost effective energy system, for power, heat, and transport. A smart city area is designed and dimensioned based on European statistics. Technological and cost data is collected of all system components, using existing technologies and well-documented projections, for a Near Future and Mid Century scenario. An energy balance and cost analysis is performed. The smart city area can be balanced requiring 20% of the car fleet to be fuel cell vehicles in a Mid Century scenario. The system levelized cost in the Mid Century scenario is 0.09 €/kWh for electricity, 2.4 €/kg for hydrogen and specific energy cost for passenger cars is 0.02 €/km. These results compare favorably with other studies describing fully renewable power, heat and transport systems.  相似文献   

7.
One of the main challenges associated with utilisation of the renewable energy is the need for energy storage to handle its intermittent nature. Power-to-Gas (PtG) represents a promising option to foster the conversion of renewable electricity into energy carriers that may attend electrical, thermal, or mechanical needs on-demand. This work aimed to incorporate a stochastic approach (Artificial Neural Network combined with Monte Carlo simulations) into the thermodynamic and economic analysis of the PtG process hybridized with an oxy-fuel boiler (modelled in Aspen Plus®). Such approach generated probability density curves for the key techno-economic performance indicators of the PtG process. Results showed that the mean utilisation of electricity from RES, accounting for the chemical energy in SNG and heat from methanators, reached 62.6%. Besides, the probability that the discounted cash flow is positive was estimated to be only 13.4%, under the set of conditions considered in the work. This work also showed that in order to make the mean net present value positive, subsidies of 68 €/MWelh are required (with respect to the electricity consumed by PtG process from RES). This figure is similar to the financial aids received by other technologies in the current economic environment.  相似文献   

8.
The cost of large scale hydrogen production from electrolysis is dominated by the cost of electricity, representing 77–89% of the total costs. The integration of low-cost renewable energy is thus essential to affordable and clean hydrogen production from electrolysis. Flexible operation of electrolysis and hydro power can facilitate integration of remote energy resources by providing the flexibility that is needed in systems with large amounts of variable renewable energy. The flexibility from hydro power is limited by the physical complexities of the river systems and ecological concerns which makes the flexibility not easily quantifiable. In this work we investigate how different levels of flexibility from hydro power affects the cost of hydrogen production.We develop a two-stage stochastic model in a rolling horizon framework that enables us to consider the uncertainty in wind power production, energy storage and the structure of the energy market when simulating power system operation. This model is used for studying hydrogen production from electrolysis in a future scenario of a remote region in Norway with large wind power potential. A constant demand of hydrogen is assumed and flexibility in the electrolysis operation is enabled by hydrogen storage. Different levels of hydro power flexibility are considered by following a reservoir guiding curve every hour, 6 h or 24 h.Results from the case study show that hydrogen can be produced at a cost of 1.89 €/kg in the future if hydro power production is flexible within a period of 24 h, fulfilling industry targets. Flexible hydrogen production also contributes to significantly reducing wasted energy from spillage from reservoirs or wind power curtailment by up to 56% for 24 h of flexibility. The results also show that less hydro power flexibility results in increased flexible operation of the electrolysis plant where it delivers 39–46% more regulating power, operates more on higher power levels and stores more hydrogen.  相似文献   

9.
The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.  相似文献   

10.
In this paper, a stochastic electricity market model is applied to estimate the effects of significant wind power generation on system operation and on economic value of investments in compressed air energy storage (CAES). The model's principle is cost minimization by determining the system costs mainly as a function of available generation and transmission capacities, primary energy prices, plant characteristics, and electricity demand. To obtain appropriate estimates, notably reduced efficiencies at part load, start-up costs, and reserve power requirements are taken into account. The latter are endogenously modeled by applying a probabilistic method. The intermittency of wind is covered by a stochastic recombining tree and the system is considered to adapt on increasing wind integration over time by endogenous modeling of investments in selected thermal power plants and CAES. Results for a German case study indicate that CAES can be economic in the case of large-scale wind power deployment  相似文献   

11.
Policy instruments clearly influence the choice of production technologies and fuels in large energy systems, including district heating networks. Current Swedish policy instruments aim at promoting the use of biofuel in district heating systems, and at promoting electric power generation from renewable energy sources. However, there is increasing pressure to harmonize energy policy instruments within the EU. In addition, natural gas based combined cycle technology has emerged as the technology of choice in the power generation sector in the EU. This study aims at exploring the role of policy instruments for promoting the use of low CO2 emissions fuels in high performance combined heat and power systems in the district heating sector. The paper presents the results of a case study for a Swedish district heating network where new large size natural gas combined cycle (NGCC) combined heat and power (CHP) is being built. Given the aim of current Swedish energy policy, it is assumed that it could be of interest in the future to integrate a biofuel gasifier to the CHP plant and co‐fire the gasified biofuel in the gas turbine unit, thereby reducing usage of fossil fuel. The goals of the study are to evaluate which policy instruments promote construction of the planned NGCC CHP unit, the technical performance of an integrated biofuelled pressurized gasifier with or without dryer on plant site, and which combination of policy instruments promote integration of a biofuel gasifier to the planned CHP unit. The power plant simulation program GateCycle was used for plant performance evaluation. The results show that current Swedish energy policy instruments favour investing in the NGCC CHP unit. The corresponding cost of electricity (COE) from the NGCC CHP unit is estimated at 253 SEK MWh?1, which is lower than the reference power price of 284 SEK MWh?1. Investing in the NGCC CHP unit is also shown to be attractive if a CO2 trading system is implemented. If the value of tradable emission permits (TEP) in such as system is 250 SEK tonne?1, COE is 353 SEK MWh?1 compared to the reference power price of 384 SEK MWh?1. It is possible to integrate a pressurized biofuel gasifier to the NGCC CHP plant without any major re‐design of the combined cycle provided that the maximum degree of co‐firing is limited to 27–38% (energy basis) product gas, depending on the design of the gasifier system. There are many parameters that affect the economic performance of an integrated biofuel gasifier for product gas co‐firing of a NGCC CHP plant. The premium value of the co‐generated renewable electricity and the value of TEPs are very important parameters. Assuming a future CO2 trading system with a TEP value of 250 SEK tonne?1 and a premium value of renewable electricity of 200 SEK MWh?1 COE from a CHP plant with an integrated biofuelled gasifier could be 336 SEK MWh?1, which is lower than both the reference market electric power price and COE for the plant operating on natural gas alone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Integrating variable renewable energy from wind farms into power grids presents challenges for system operation, control, and stability due to the intermittent nature of wind power. One of the most promising solutions is the use of compressed air energy storage (CAES). The main purpose of this paper is to examine the technical and economic potential for use of CAES systems in the grid integration. To carry out this study, 2 CAES plant configurations: adiabatic CAES (A‐CAES) and diabatic CAES (D‐CAES) were modelled and simulated by using the process simulation software ECLIPSE. The nominal compression and power generation of both systems were given at 100 and 140 MWe, respectively. Technical results showed that the overall energy efficiency of the A‐CAES was 65.6%, considerably better than that of the D‐CAES at 54.2%. However, it could be seen in the economic analysis that the breakeven electricity selling price (BESP) of the A‐CAES system was much higher than that of the D‐CAES system at €144/MWh and €91/MWh, respectively. In order to compete with large‐scale fossil fuel power plants, we found that a CO2 taxation scheme (with an assumed CO2‐tax of €20/tonne) improved the economic performance of both CAES systems significantly. This advantage is maximised if the CAES systems use low carbon electricity during its compression cycle, either through access to special tariffs at times of low carbon intensity on the grid, or by direct coupling to a clean energy source, for example a 100‐MW class wind farm.  相似文献   

13.
The paper analyses the economic value of using electric heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Both measures have different technical and economic characteristics, making a comparison of the value of these measures relevant. A stochastic, fundamental bottom‐up model, taking the stochastic nature of wind power production explicitly into account when making dispatch decisions, is used to analyse the technical and economical performance of these measures in a North European power system covering Denmark, Finland, Germany, Norway and Sweden. Introduction of heat pumps or electric boilers is beneficial for the integration of wind power, because the curtailment of wind power production is reduced, the price of regulating power is reduced and the number of hours with very low power prices is reduced, making the wind power production more valuable. The system benefits of heat pumps and electric boilers are connected to replacing heat production on fuel oil heat boilers and combined heat and power (CHP) plants using various fuels with heat production using electricity and thereby saving fuel. The benefits of the measures depend highly on the underlying structure of heat production. The integration measures are economical, especially in systems where the marginal heat production costs before the introduction of the heat measures are high, e.g. heat production on heat boilers using fuel oil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Innovative solutions need to be developed for harvesting wind energy far offshore. They necessarily involve on-board energy storage because grid-connection would be prohibitively expensive. Hydrogen is one of the most promising solutions. However, it is well-known that it is challenging to store and transport hydrogen which may have a critical impact on the delivered hydrogen cost.In this paper, it is shown that there are vast areas far offshore where wind power is both characterized by high winds and limited seasonal variations. Capturing a fraction of this energy could provide enough energy to cover the forecast global energy demand for 2050. Thus, scenarios are proposed for the exploitation of this resource by fleets of hydrogen-producing wind energy converters sailing autonomously. The scenarios include transportation and distribution of the produced hydrogen.The delivered hydrogen cost is estimated for the various scenarios in the short term and in the longer term. Cost estimates are derived using technical and economic data available in the literature and assumptions for the cost of electricity available on-board the wind energy converters. In the shorter term, delivered cost estimates are in the range 7.1–9.4 €/kg depending on the scenario and the delivery distance. They are based on the assumption of on-board electricity cost at 0.08€/kWh. In the longer term, assuming an on-board electricity cost at 0.04€.kWh, the cost estimates could reduce to 3.5 to 5.7 €/kg which would make the hydrogen competitive on several hydrogen markets without any support mechanism. For the hydrogen to be competitive on all hydrogen markets including the ones with the highest GHG emissions, a carbon tax of approximately 200 €/kg would be required.  相似文献   

15.
A thermal energy storage system, consisting of a packed bed of rocks as storing material and air as high-temperature heat transfer fluid, is analyzed for concentrated solar power (CSP) applications. A 6.5 MWhth pilot-scale thermal storage unit immersed in the ground and of truncated conical shape is fabricated and experimentally demonstrated to generate thermoclines. A dynamic numerical heat transfer model is formulated for separate fluid and solid phases and variable thermo-physical properties in the range of 20–650 °C, and validated with experimental results. The validated model is further applied to design and simulate an array of two industrial-scale thermal storage units, each of 7.2 GWhth capacity, for a 26 MWel round-the-clock concentrated solar power plant during multiple 8 h-charging/16 h-discharging cycles, yielding 95% overall thermal efficiency.  相似文献   

16.
The use of solar thermal systems with electricity backup and heat pumps as hot water suppliers in residential buildings seems to be a very promising way to increase energy efficiency. Nevertheless, the massive adoption of such solutions in small networks (neighborhood, village) may induce problems in the electric grid management. This study explores the impact of such systems in small electric grids, using an hourly electricity backup load model. To test and validate the model, we used the island of Corvo (Azores), a small isolated community where it is being implemented a project of electrification of domestic hot water systems (DHW). We consider different load scenarios to manage the backup of DHW systems and analyze its consequences on the peak load and overall energy demand. For Corvo, for the best case where the backup is limited and distributed along off-peak hours, we observed an increase of 24% in the peak load and 7.5% in the annual energy demand. Critical values of peak load are found in winter, when daily solar irradiation is lower than 2000 Wh/m2/day. We conclude that the solar thermal systems are responsible for most of the peak load increase, but since they have the flexibility to adjust the electric backup hours due to the thermal storage capacity, the use of these systems can minimize the impact on the grid. Heat pumps on the other hand, albeit being more efficient in terms electric backup, are less flexible to contribute to the grid management as they operate continuously.  相似文献   

17.
The Fukushima disaster has lead the French government to release novel cost information relative to its nuclear electricity program allowing us to compute a levelized cost. We identify a modest escalation of capital cost and a larger than expected operational cost. Under the best scenario, the cost of French nuclear power over the last four decades is 59/MWh (at 2010 prices) while in the worst case it is 83/MWh. On the basis of these findings, we estimate the future cost of nuclear power in France to be at least 76/MWh and possibly 117/MWh. A comparison with the US confirms that French nuclear electricity nevertheless remains cheaper. Comparisons with coal, natural gas and wind power are carried out to find the advantage of these.  相似文献   

18.
This paper deals with the energy recovery in the dairy industry. Thermodynamic, economic and environmental optimization of three water-to-water heat pumps has been studied in order to replace totally or partially a fuel boiler used to produce heat at different temperature levels in a cheese factory. These heat pumps have their evaporators connected to one effluents source and two of them are equipped by storage tanks at the condenser side. Multi-objective optimization permits optimal repartition of mass flow rates of effluents and optimal choice of electrical power of the compressors and volumes of storage tanks. The thermodynamic objective is based on the exergy destruction in the whole system. The economic objective is based on the investment cost and the operating cost obtained with the heat pump system. The environmental impact objective has been defined and expressed in cost terms by considering a CO2 taxation (carbon tax) on the GHG emissions. This objective has been integrated with the economic objective. Multi-objective genetic algorithms are used for Pareto approach optimization.  相似文献   

19.
As the share of distributed renewable power generation increases, high electricity prices and low feed-in tariff rates encourage the generation of electricity for personal use. In the building sector, this has led to growing interest in energy self-sufficient buildings that feature battery and hydrogen storage capacities. In this study, we compare potential technology pathways for residential energy storage in terms of their economic performance by means of a temporal optimization model of the fully self-sufficient energy system of a single-family building, taking into account its residential occupancy patterns and thermal equipment. We show for the first time how heat integration with reversible solid oxide cells (rSOCs) and liquid organic hydrogen carriers (LOHCs) in high-efficiency, single-family buildings could, by 2030, enable the self-sufficient supply of electricity and heat at a yearly premium of 52% against electricity supplied by the grid. Compared to lithium-ion battery systems, the total annualized cost of a self-sufficient energy supply can be reduced by 80% through the thermal integration of LOHC reactors and rSOC systems.  相似文献   

20.
The optimization of a district solar heating system with an electric-driven heat pump and seasonal heat storage is discussed. The optimization process comprises thermal, economic and system control analyses. Thermal and economic optima have been derived for collector area and storage volume simultaneously. The effects of different collector types and building loads are also investigated. Summertime charging of the storage by off-peak electricity has been applied to avoid severe peaking of auxiliary in the winter and to reduce the yearly energy cost. The thermal co-storage of electric energy is emphasized with systems which fail to supply heat for the heat pump during the winter heating season.‡ It has been found that system cost-effectiveness is only slightly affected as storage volume is increased beyond the optimum size. Large variations in the optima for different system configurations were found. The minimum cost of heat supplied in an optimal 500-unit community with 90% solar fraction was estimated at 8.9 ¢ kWh−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号