首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind power is currently one of the types of renewable energy with a large generation capacity. However, operation of wind power generation is very challenging because of the intermittent and stochastic nature of the wind speed. Wind speed forecasting is a very important part of wind parks management and the integration of wind power into electricity grids. As an artificial intelligence algorithm, radial basis function neural network (RBFNN) has been successfully applied into solving forecasting problems. In this paper, a novel approach named WTT–SAM–RBFNN for short-term wind speed forecasting is proposed by applying wavelet transform technique (WTT) into hybrid model which hybrids the seasonal adjustment method (SAM) and the RBFNN. Real data sets of wind speed in Northwest China are used to evaluate the forecasting accuracy of the proposed approach. To avoid the randomness caused by the RBFNN model or the RBFNN part of the hybrid model, all simulations in this study are repeated 30 times to get the average. Numerical results show that the WTT–SAM–RBFNN outperforms the persistence method (PM), multilayer perceptron neural network (MLP), RBFNN, hybrid SAM and RBFNN (SAM–RBFNN), and hybrid WTT and RBFNN (WTT–RBFNN). It is concluded that the proposed approach is an effective way to improve the prediction accuracy.  相似文献   

2.
As a renewable energy source, wind turbine generators are considered to be important generation alternatives in electric power systems because of their nonexhaustible nature. With the increase in wind power penetration, wind power forecasting is crucially important for integrating wind power in a conventional power grid. In this paper, a short-term wind power output prediction model is presented from raw data of wind farm, and prediction of short-term wind power is implemented using differential empirical mode decomposition (EMD) and relevance vector machine (RVM). The differential EMD method is used to decompose the wind farm power to several detail parts associated with high frequencies [intrinsic mode function (IMF)] and an approximate part associated with low frequencies (r). Then, RVM is used to predict both the IMF components and the r. Finally, the short-term wind farm power is forecasted by summing the RVM-based prediction of both the IMF components and the r. Simulation results have shown that the proposed short-term wind power prediction method has good performance.  相似文献   

3.
为提升光伏、风电等分布式能源大量接入电网后短期电力负荷的预测精度,促进电网消纳能力提升,本文对光伏出力及短期用电负荷采用小波——径向基函数(RBF)神经网络预测方法;对风力发电首先利用总体平均经验模态分解(EEMD)方法对其功率数据分解,再采用BP神经网络、RBF神经网络、小波神经网络、ELMAN神经网络四种神经网络预测方法进行预测,并用粒子群算法(PSO)和灰色关联度(GRA)修正。最后,利用等效负荷的概念,分析光伏、风力发电并网对于短期电力负荷预测的影响,并将三种模型有效结合,得到了考虑光伏及风力发电并网的电力系统短期负荷预测的等效负荷预测模型。实例分析表明,本文所提方法相较于其他方法在该预测项目上具有相对更高的预测精度。  相似文献   

4.
This study presents a complete advanced control structure aimed at the optimal and most efficient energy management for a Grid-Connected Hybrid Power plant. This control scheme is composed of process supervision and process control layers, and it is a possible technology to enable improvements in the energy consumption of industrial systems subject to constraints and process demands. The proposed structure consists of the combination of a Model-Based Predictive Controller, formulated within the Chance Constraints framework to deal with stochastic disturbances (renewable sources, as solar irradiance), an optimal finite-state machine decision system and the use of disturbance estimation techniques for the prediction of renewable sources. The predictive controller uses feedforward compensation of estimated future disturbances, obtained by the use of Nonlinear Auto-Regressive Neural Networks with time delays. The proposed controller aims to perform the management of which energy system to use and to decide where to store energy between multiple storage options. This has to be done while always maximizing the use of renewable energy and optimizing energy generation due to contract rules (maintain maximal economic profit). The proposed method is applied to a case study of energy generation in a sugar cane power plant, with non-dispatchable renewable sources (such as photovoltaic and wind power generation), as well as dispatchable sources (as biomass and biogas). This hybrid power system is subject to operational constraints, as to produce steam in different pressures, sustain internal demands and, imperiously, produce and maintain an amount of electric power throughout each month, defined by strict contract rules with a local Distribution Network Operator (DNO). This paper aims to justify the use of this novel approach to optimal energy generation in hybrid microgrids through simulation, illustrating the performance improvement for different cases.  相似文献   

5.
In this paper, an intelligent forecasting model, a recurrent neural network (RNN) with nonlinear autoregressive architecture, for daily and hourly solar radiation and wind speed prediction is proposed for the enhancement of the power management strategies (PMSs) of hybrid renewable energy systems (HYRES). The presented model (RNN) is applicable to an autonomous HYRES, where its estimations can be used by a central control unit in order to create in real time the proper PMSs for the efficient subsystems’ utilization and overall process optimization. For this purpose, a flexible network-based design of the HYRES is used and, moreover, applied to a specific system located on Olvio, near Xanthi, Greece, as part of Systems Sunlight S.A. facilities. The simulation results indicated that RNN is capable of assimilating the given information and delivering some satisfactory future estimation achieving regression coefficient from 0.93 up to 0.99 that can be used to safely calculate the available green energy. Moreover, it has some sufficient for the specific problem computational power, as it can deliver the final results in just a few seconds. As a result, the RNN framework, trained with local meteorological data, successfully manages to enhance and optimize the PMS based on the provided solar radiation and wind speed prediction and make the specific HYRES suitable for use as a stand-alone remote energy plant.  相似文献   

6.
短期风电功率预测对电力系统的安全稳定运行和能源的优化配置具有重要意义。鉴于卷积神经网络(CNN)高效的数据特征提取能力,以及长短期记忆网络(LSTM)描述时间序列长期依赖关系的能力。为了提高短期风电功率预测的精度,设计了一种基于CNN和LSTM的风电功率预测模型。该模型利用卷积神经网络对风电功率、风速、风向数据进行多层卷积和池化堆叠计算,提取风电功率相关数据的特征图谱。为了描述风电功率序列的时序依从关系,将图谱特征信息作为长短期记忆网络的输入信息,计算得到风电功率的预测结果。采用西班牙某风电场的实测数据进行模型预测精度验证。结果表明,该模型较LSTM、Elman模型具有更好的预测性能。  相似文献   

7.
Accurate and steady wind speed prediction is essential for the efficient management of wind power factories and energy systems. However, it is difficult to obtain satisfactory forecasting performance because of the characteristics of random nonlinear fluctuations inherent in wind speed variation. Considering the drawbacks of statistical models in forecasting nonlinear time series and the problem of artificial intelligence models easily falling into a local optimum, in this study, we successfully integrate the variable weighted combination theory into a new combined forecasting model that simultaneously consists of three disparate hybrid models based on the decomposition technology. Moreover, the extreme learning machine optimized by the multi-objective grasshopper optimization algorithm is adopted to integrate all the forecasting results derived from each hybrid model to further enhance the forecasting accuracy. In this study, we consider a case study that employs several authentic wind speed data aggregates of Shandong wind farms for an evaluation of the forecasting performance of the proposed combined model. The experimental results reveal that this proposed model surpasses the contrasted benchmark models and is satisfactory for intellective grid programs.  相似文献   

8.
Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance prediction accuracy, this study developed a hybrid model that incorporates the following stages. First, an improved complete ensemble empirical mode decomposition with adaptive noise technology was applied to decompose the wind energy series for eliminating noise and extracting the main features of original data. Next, to achieve high accurate and stable forecasts, an improved wavelet neural network optimized by optimization methods was built and used to implement wind energy prediction. Finally, hypothesis testing, stability test and four case studies including eighteen comparison models were utilized to test the abilities of prediction models. The experimental results show that the average values of the mean absolute percent errors of the proposed hybrid model are 5.0116% (one-step ahead), 7.7877% (two-step ahead) and 10.6968% (three-step ahead), which are much lower than comparison models.  相似文献   

9.
可再生能源并入电网后,电能供给量增加,短期电量负荷情况难以预测,无法制定准确的电能分配策略,由此,提出基于随机森林的短期电量负荷精准预测方法研究。深入分析短期电量负荷预测影响因素(气象、时间、电价与随机干扰因素),选取适当的模型输入变量(历史电量负荷数据、温度数据与日类型),结合随机森林算法构建短期电量负荷预测模型,并重复确定相似日的选取规则,采用粒子群优化算法寻找预测模型参数最佳值,将样本集输入至模型中,获得精准的短期电量负荷预测结果。实验数据显示:当输入变量数量达到一定值后,应用提出方法获得的短期电量负荷预测时延稳定在0.55s左右,短期电量负荷预测误差几乎为0,充分证实了提出方法应用性能较佳。  相似文献   

10.
Short-term wind speed prediction is beneficial to guarantee the safety of wind power utilization and reduce the cost of wind power generation. As a kind of the powerful artificial intelligent algorithms, support vector regression (SVR) has been successfully employed in solving forecasting problems. However, due to the intrinsic complexity and multi-patterns of wind speed fluctuations, it is regarded as one of the most challenging applications for wind speed prediction. To alleviate the influence of complexity and capture these different patterns, this study proposes a novel approach named SIE–WDA–GA–SVR for short-term wind speed prediction, which applies the seasonal information extraction (SIE) and wavelet decomposition algorithm (WDA) into hybrid model that integrates the genetic algorithm (GA) into SVR. First, the proposed approach uses SIE to decompose the original wind speed into seasonal and trend components, and the seasonal indices are calculated by SIE. Second, the proposed approach uses WDA to decompose the trend component into both the approximate and the detailed scales. Third, the proposed approach uses GA–SVR to forecast the approximated and detailed scales, respectively. Then, the prediction values of the trend component can be obtained by integrating the prediction values of the approximated scale into the prediction values of the detailed scale. By integrating the seasonal indices into the prediction values of trend component, we can obtain the final forecasting results of the original wind speed. Moreover, the partial autocorrelation function is used to determine the number of input dimension for the SVR, and the GA is used to select the parameters of the SVR. Four real wind speed datasets are used as test samples to verify the proposed approach. Experimental results indicate that the proposed approach outperforms other benchmark models in four statistical error measures, and can improve the forecasting accuracy of wind speed.  相似文献   

11.
风力发电是当今新能源领域最具有前景的发展方向,而准确有效地预测风电场的输出功率对于风电场的顺利并网运行具有重要的意义。从实际的风力发电场中获得了有关风速、风向以及实际输出功率等历史数据,建立了基于GMDH神经网络的风电短期功率预测模型并将其运用于实际的风电场功率短期预测当中。最后,通过将预测结果和实际输出功率比较,表明GMDH方法在风电功率预测中具有较高的预测精度。  相似文献   

12.
Due to deregulation of electricity industry, accurate load forecasting and predicting the future electricity demand play an important role in the regional and national power system strategy management. Electricity load forecasting is a challenging task because electric load has complex and nonlinear relationships with several factors. In this paper, two hybrid models are developed for short-term load forecasting (STLF). These models use “ant colony optimization (ACO)” and “combination of genetic algorithm (GA) and ACO (GA-ACO)” for feature selection and multi-layer perceptron (MLP) for hourly load prediction. Weather and climatic conditions, month, season, day of the week, and time of the day are considered as load-influencing factors in this study. Using load time-series of a regional power system, the performance of ACO?+?MLP and GA-ACO?+?MLP hybrid models is compared with principal component analysis (PCA)?+?MLP hybrid model and also with the case of no-feature selection (NFS) when using MLP and radial basis function (RBF) neural models. Experimental results and the performance comparison with similar recent researches in this field show that the proposed GA-ACO?+?MLP hybrid model performs better in load prediction of 24-h ahead in terms of mean absolute percentage error (MAPE).  相似文献   

13.
准确的风速预测对于风电场和电力系统的稳定运行具有重要意义。本文提出一种基于局部高斯过程的短期风速预测方法。首先,把总的训练样本集按固定长度的时间窗划分成许多个子训练集。然后,运用局部高斯过程模型对各个子训练集进行建模,通过最小化训练集的预测误差为优化目标,用改进粒子群算法求取模型的最优超参数。最后,对某实测风速数据进行风速预测分析,结果表明基于局部高斯过程的短期风速预测能有效提高风速预测精度。  相似文献   

14.
Prediction of solar power involves the knowledge of the sun , atmosphere and other parameters, and the scattering processes and the specifications of a solar energy plant that employs the sun's energy to generate solar power . This prediction result is essential for an efficient use of the solar power plant, the management of the electricity grid, and solar energy trading. However, because of nonlinear and nonstationary behavior of solar power time series, an efficient forecasting model is needed to predict it. Accordingly, in this paper, we propose a new forecast approach based on combination of a neural network with a metaheuristic algorithm as the hybrid forecasting engine. The metaheuristic algorithm optimizes the free parameters of the neural network. This approach also includes a 2‐stage feature selection filter based on the information‐theoretic criteria of mutual information and interaction gain, which filters out the ineffective input features. To demonstrate the effectiveness of the proposed forecast approach, it is implemented on a real‐world engineering test case. Obtained results illustrate the superiority of the proposed approach in comparison with other prediction methods.  相似文献   

15.
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules (FSIRMs) connected fuzzy inference system (FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system (FSIRMNFS). Further, the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.   相似文献   

16.
为提高风电功率短期预测的准确性,针对KNN(K-Nearest neighbor algorithm)算法在风电功率预测中的不足,提出了基于K-means和改进KNN算法的风电功率短期预测方法;利用K-means聚类方法确定风电历史样本的类别,对KNN算法中搜索相似历史样本集的方式进行了改进和优化,构建了预测模型,并采用C/S架构实现了预测系统的设计;该系统具有自修正功能,能够随着预测次数的增加,不断修正预测模型,逐渐降低预测的误差率;以吉林省某风电场历史数据为样本进行了仿真分析,结果显示该算法与其它算法相比平均绝对误差和均方根误差最大下降1.08%和0.48%,运算时间提升了5.45%,在风电功率超短期多步预测中具有推广应用价值。  相似文献   

17.
针对并网型风光互补发电系统中,系统最大输出功率大于给定功率时,风力发电子系统和光伏发电子系统功率如何协调的问题,提出了一种功率协调控制方法.在该方法中,根据系统并网收益最大和输出电流谐波最小构建目标函数,采用带精英策略的快速非支配排序遗传算法对风力发电子系统和光伏发电子系统的输出功率进行多目标优化,协调控制子系统的发电功率;并以甘肃华电阿克赛风光互补发电项目为例进行了仿真验证.仿真结果表明,与传统的光伏优先接入方式相比,基于NSGA-Ⅱ的并网型风光互补发电系统协调控制方法可以更加合理地利用风能和太阳能,提高新能源电能的电网友好性.  相似文献   

18.
To reduce network integration and boost energy trading, wind power forecasting can play an important role in power systems. Furthermore, the uncertain and nonconvex behavior of wind signals make its prediction complex. For this purpose, accurate prediction tools are needed. In this paper, a ridgelet transform is applied to a wind signal to decompose it into sub-signals. The output of ridgelet transform is considered as input of new feature selection to identify the best candidates to be used as the forecast engine input. Finally, a new hybrid closed loop forecast engine is proposed based on a neural network and an intelligent algorithm to predict the wind signal. The effectiveness of the proposed forecast model is extensively evaluated on a real-world electricity market through a comparison with well-known forecasting methods. The obtained numerical results demonstrate the validity of proposed method.  相似文献   

19.
《Journal of Process Control》2014,24(8):1318-1327
This paper presents a methodology for the application of receding horizon optimization techniques to the problem of optimally managing the energy flows in the chlor-alkali process using a hybrid renewable energy system (HRES). The HRES consists of solar and wind energy generation units and fuel cells to supply energy. The HRES is also connected to the grid and allows for buying or selling electricity from and to the grid. Initially, detailed models of each system component are introduced as the basis for the simulation study. Energy management strategies are then developed to realize the objectives of meeting production requirements while minimizing the overall operating and environmental costs. Sensitivity and uncertainty analyses are carried out to elucidate the key parameters that influence the energy management strategies. Finally, production demand response is integrated into the proposed methodology.  相似文献   

20.
纪浩林  彭亮 《测控技术》2016,35(8):138-141
具有较高精度的超短期风速预测有着重要的作用,它对建立和保障并网运行风电场风电功率预测预报系统有着举足轻重的作用.但是,由于风速的影响因素较多,且存在着巨大的波动性、随机性,以及较高的自相关性.这些因素,极大地影响了传统的风速预测方法.因此,探究一种短期风速预测方法是十分必要的,此方法以聚类的小脑超闭球算法为基础,此超闭球方法,对减少数据输入的地址碰撞有着很好的作用,提高了学习速度,另通过模糊聚类对输入数据确定节点数和节点值,提高了学习精度.仿真结果证明基于聚类的小脑超闭球网络相比应用较为成熟的BP神经网络等能很好地预测未来1h风速.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号