首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of lidar backscatter profiles in optically thin clouds   总被引:3,自引:0,他引:3  
Young SA 《Applied optics》1995,34(30):7019-7031
The solution of the lidar equation for profiles of backscatter and extinction in optically thin clouds is constrained by values of the cloud transmittance determined from the elastically scattered lidar signals below and above the cloud. The method is extended to those cases in which an aerosol layer lies below or above the cloud layer. Examples are given in both cases. An analytical expression for the average lidar ratio in the cloud is derived for those cases in which molecular scattering is significant.  相似文献   

2.
提出了一种新的探测对流层低层大气温度的转动拉曼激光雷达方法,通过测量N2和O2的后向散射的纯转动拉曼谱的强度,计算它们的比值来确定大气温度的垂直分布,并对其性能进行了数值模拟。转动拉曼激光雷达的光源是一个调Q的Nd:YAG激光器,经扩束器后输出能量200mJ;采用双光栅单色仪提取所需要的氮气和氧气的转动拉曼谱;接收机采用光电倍增管和双通道光子计数器,量子效率是10%(48000个脉冲累加)。夜晚它对近地面10.2km高度内的探测信噪比在10:1以上,白天它对近地面3.6km高度内的探测信噪比在10:1以上,计算的温度与模拟用的温度真值阔线相差约0.3K。  相似文献   

3.
Validation of wind profiles measured with incoherent Doppler lidar   总被引:4,自引:0,他引:4  
A high-resolution incoherent Doppler lidar has been constructed at the University of Michigan Space Physics Research Laboratory. The primary purpose of this lidar is to measure vertical profiles of the horizontal wind field with high spatial and temporal resolution. In mid-1994 a rawinsonde system was used to assess the performance of the lidar. The resulting comparisons of profiles from the balloons and the lidar are shown. The comparisons show an ~2-m/s rms error between the two systems. The reasons for this error are discussed, and a sensitivity study is shown to illustrate the sensitivity of the lidar wind measurements to various system parameters. Finally, steps that are being taken to improve the systematic errors are discussed.  相似文献   

4.
The usual linear shape function for approximating axial displacement in beam finite elements used as eccentric stiffeners leads to an inconsistency which can result in large errors in the deflection of plates or composite beams. The introduction of an additional degree-of-freedom for these elements circumvents this problem.  相似文献   

5.
A method is described for the empirical determination of altitude range resolutions of ozone profiles obtained by differential absorption lidar (DIAL) analysis. The algorithm is independent of the implementation of the DIAL analysis, in particular of the type and order of the vertical smoothing filter applied. An interpretation of three definitions of altitude range resolution is given on the basis of simulations carried out with the Jet Propulsion Laboratory ozone DIAL analysis program, SO3ANL. These definitions yield altitude range resolutions that differ by as much as a factor of 2. It is shown that the altitude resolution calculated by SO3ANL, and reported with all Jet Propulsion Laboratory lidar ozone profiles, corresponds closely to the full width at half-maximum of a retrieved ozone profile if an impulse function is used as the input ozone profile.  相似文献   

6.
Shen JL  Künnemeyer R 《Applied optics》2006,45(32):8346-8349
We present a lidar concept for wind-speed measurements, in which a pulsed laser is used as the source for measurement and reference beams. A fraction of the transmitted pulse is stored in a fiber-optic ring resonator with a path length longer than the pulse. The output of the resonator is a pulse train that is used as the reference beam and can be mixed with the Doppler-shifted measurement signal. Because this reference has traveled a distance equivalent to the measurement beam's path length, low-coherence sources can be used. Inserting an erbium-doped fiber amplifier into the resonator ensures that the stored pulses do not decay in amplitude. Experiments prove that 16 reference pulses of sufficiently constant amplitude and stability can be generated. This would correspond to a measurement range of 240 m in free air over which the returned signal is sampled at equal intervals. Velocity measurements of a hard target have been carried out in the range of 1-10 m/s. The Doppler-measured velocities agree with tachometer reference measurements within +/-0.09 m/s.  相似文献   

7.
Distortions of particular extinction-coefficient profiles measured with lidar in a two-component (molecular and aerosol) scattering atmosphere are analyzed. The error of the extinction coefficient measured at range r depends on the location of the point r(b), where a boundary value is specified, and the particulate optical depth of the atmosphere between r and r(b); the particulate backscatter-to-extinction ratio; and the ratio of particulate and molecular scattering extinction. If the near-end solution is used, small measurement errors can produce a significant divergence between the actual and the retrieved extinction-coefficient profiles, even if the boundary value and the particulate backscatter-to-extinction ratio are specified accurately. This effect is exacerbated at small values of the particulate scattering coefficient and the backscatter-to-extinction ratio. When reasonable criteria are used, feasible minimum and maximum boundary values can be specified to restrict the range of lidar equation solutions from below and from above.  相似文献   

8.
Density and temperature profiles in the 30-70-km altitude range are measured with a XeF lidar system using Rayleigh scattering. With a 16-W XeF laser at wavelengths 351 and 353 nm, density and temperature accuracies of less than +/-3% and +/-10 K are obtained up to 60 km for an observation time of 15 min. The overall performances are now competitive with and superior to those of traditional Nd:YAG SHG lidars at 532 nm.  相似文献   

9.
10.
A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to noise and processing errors, and it is much faster than the equivalent least-squares approach. Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite lidars). It also permits an improvement of cloud radiative-property computations that are based on huge lidar data sets for which storage and careful examination of single lidar profiles can't be carried out.  相似文献   

11.
Conclusions An improved treble-winding phase meter type D578 frequency error due to ±10% frequency deviation from its nominal value of 50 Hz does not exceed ±0.45%.The circuit of a treble-winding phase meter with an RLC correcting network can be taken as a basis for designing a single-phase high-precision 50±5 Hz phase meter with a frequency error which fully meets the requirements of the appropriate GOST.  相似文献   

12.
A new technique is presented for the retrieval of ozone-concentration profiles (O(3)) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O(3) profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O(3) profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation.  相似文献   

13.
Hair JW  Caldwell LM  Krueger DA  She CY 《Applied optics》2001,40(30):5280-5294
A high-spectral-resolution lidar can measure vertical profiles of atmospheric temperature, pressure, the aerosol backscatter ratio, and the aerosol extinction coefficient simultaneously. We describe a system with these characteristics. The transmitter is a narrow-band (FWHM of the order of 74 MHz), injection-seeded, pulsed, double YAG laser at 532 nm. Iodine-vapor filters in the detection system spectrally separate the molecular and aerosol scattering and greatly reduce the latter (-41 dB). Operating at a selected frequency to take advantage of two neighboring lines in vapor filters, one can obtain a sensitivity of the measured signal-to-air temperature ratio equal to 0.42%/K. Using a relatively modest size transmitter and receiver system (laser power times telescope aperture equals 0.19 Wm(2)), our measured temperature profiles (0.5-15 km) over 11 nights are in agreement with balloon soundings to within 2.0 K over an altitude range of 2-5 km. There is good agreement in the lapse rates, tropopause altitudes, and inversions. In principle, to invert the signal requires a known density at one altitude, but in practice it is convenient to also use a known temperature at that altitude. This is a scalable system for high spatial resolution of vertical temperature profiles in the troposphere and lower stratosphere, even in the presence of aerosols.  相似文献   

14.
15.
16.
We regard the problem of differentiation occurring in the retrieval of aerosol extinction coefficient profiles from inelastic Raman lidar signals by searching for a stable solution of the resulting Volterra integral equation. An algorithm based on a projection method and iterative regularization together with the L-curve method has been performed on synthetic and measured lidar signals. A strategy to choose a suitable range for the integration within the framework of the retrieval of optical properties is proposed here for the first time to our knowledge. The Monte Carlo procedure has been adapted to treat the uncertainty in the retrieval of extinction coefficients.  相似文献   

17.
A variational method for retrieving the aerosol optical thickness and backscatter coefficient profiles from multiangle lidar measurements is presented and discussed. A monostatic single-wavelength low-energy lidar system was operated at different zenith angles during the Indian Ocean Experiment (INDOEX) campaign in 1999 to characterize the aerosol plumes in the Indian monsoon. The variational method was applied to lidar data to retrieve profiles of optical thickness and the backscatter coefficient for nighttime and daytime measurements. Results are obtained with an uncertainty of 10% below 3 km (nighttime) and 2.8 km (daytime) and a bias of less than 0.01. During daytime the retrieval of optical parameters is indeed limited to a lower altitude owing to the sky background signal and the atmospheric inhomogeneity. In both cases the total aerosol optical thickness is consistent (+/- 10%) with the integrated value derived from sunphotometer measurements. Backscatter-to-extinction ratios estimated in different regions by two distinct methods compared well, which proves the capability of the method to assess optical measurements and account for the altitude dependence of the phase function.  相似文献   

18.
In the analysis of Raman lidar measurements of aerosol extinction, it is necessary to calculate the derivative of the logarithm of the ratio between the atmospheric number density and the range-corrected lidar-received power. The statistical fluctuations of the Raman signal can produce large fluctuations in the derivative and thus in the aerosol extinction profile. To overcome this difficult situation we discuss three methods: Tikhonov regularization, variational, and the sliding best-fit (SBF). Three methods are performed on the profiles taken from the European Aerosol Research Lidar Network lidar database simulated at the Raman shifted wavelengths of 387 and 607 nm associated with the emitted signals at 355 and 532 nm. Our results show that the SBF method does not deliver good results for low fluctuation in the profile. However, Tikhonov regularization and the variational method yield very good aerosol extinction coefficient profiles for our examples. With regard to, e.g., the 532 nm wavelength, the L2 errors of the aerosol extinction coefficient profile by using the SBF, Tikhonov, and variational methods with respect to synthetic noisy data are 0.0015(0.0024), 0.00049(0.00086), and 0.00048(0.00082), respectively. Moreover, the L2 errors by using the Tikhonov and variational methods with respect to a more realistic noisy profile are 0.0014(0.0016) and 0.0012(0.0016), respectively. In both cases the L2 error given in parentheses concerns the second example.  相似文献   

19.
20.
Kovalev VA  Hao WM  Wold C 《Applied optics》2007,46(36):8627-8634
A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter coefficient and the particulate optical depth. The stepwise profile of the column-integrated lidar ratio is found that provides best matching of the initial (inverted) profile of the optical depth to that obtained by the inversion of the backscatter-coefficient profile. The retrieval of the extinction coefficient is made without using numerical differentiation. The method reduces the level of random noise in the retrieved extinction coefficient to the level of noise in the inverted backscatter coefficient. Examples of simulated and experimental data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号