共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
半参数回归模型在工程、经济和医学问题中有着广泛的应用,但是实际问题中数据往往带有测量误差,并且许多情况下解释变量和某些响应变量之间的关系是单调的,此时普通的参数最小二乘估计是有偏的,且非参数部分的估计无法保证单调性.本文针对这两个问题研究了半参数单调回归模型,得到了参数的无偏估计,同时非参数部分估计具有单调性,并得到了... 相似文献
3.
污染数据半参数回归模型的估计方法 总被引:6,自引:0,他引:6
考虑半参数回归模型yj=xjβ+g(tj)+εj,j=1,2,…,n其中(xj,tj)为取值于R×[0,1]上的固定设计,β为未知参数,g是定义在[0,1]上的未知函数,εj为随机误差,Eεj=0,Eε2j=σ21.但y1,…,yn受到另一独立同分布的随机变量序列u1,…,un两种不同方式的污染,uj与yj独立.本文利用矩估计方法给出两种污染方式下β、g及污染参数的估计. 相似文献
4.
5.
机械加工过程的误差分析对于消减误差源、提升工序质量具有重要的实际指导意义.研究者们尝试了多种误差分析方法用于获得误差源对加工质量的作用规律,然而由于加工误差的复杂性,各有局限性.本文则根据工程经验和数学推导建立了用于一般机械加工过程误差分析的多元半参数回归模型,基于测量数据详细讨论了所建立模型的参数估计和非参数规律辨识问题.仿真实例证明,与现有方法相比,本文所提方法能够准确估计上游工序传递误差,有效辨识当前工序系统误差的作用规律,研究成果为一般机械加工过程的误差分析奠定了基础. 相似文献
6.
7.
纵向数据半参数回归模型估计的强相合性 总被引:2,自引:0,他引:2
本文考虑如下纵向数据半参数回归模型:yij=x'ijβ g(tij) eij。基于最小二乘法和一般的非参数权函数方法给出了模型中参数β,回归函数g(·)和误差方差σ2的估计,并在适当条件下证明了估计量的强相合性。 相似文献
8.
讨论了一类半参数回归模型y =x′β+g(t′α) +e .假定y被随机变量T右侧截尾 ,T与y独立 ,T~G。在G已知和未知两种情况下 ,构造了α、β和g(·) 的强相合估计 相似文献
9.
10.
半参数回归模型的泛补偿最小二乘估计 总被引:1,自引:0,他引:1
本文首先提出泛补偿最小二乘法:接着,使用该法考虑半参数回归模型,得到了参数及非参数的估计。然后,将泛补偿最小二乘法与补偿最小二乘法进行了比较;最后用模拟的算例说明了该方法的有效性。 相似文献
11.
直线回归的最小面积法 总被引:6,自引:0,他引:6
自变量、因变量的不同选择,用传统的最小二乘法得到的回归方程是不同的。提出直线回归的最小面积法解决这一问题,推导了该方法的计算公式并讨论了该方法的一些性质。 相似文献
12.
R. W. Farebrother 《技术计量学》2013,55(2):121-122
In this paper we examine the relationship between the general ridge estimator and the standardized ridge estimator. 相似文献
13.
《技术计量学》2013,55(4):326-332
Local influence diagnostics can be used to assess the influence of predictor values in multiple linear regression. For n observations and k regressors, an eigenanalysis of an nk ×nk matrix is required to assess the influence on the estimated coefficients. We provide the analytic expressions for the eigenvectors and show that they are easily computed, describe influence on the parameter estimates of a principal components regression, and are related to leverage, outliers, and added-variables plots. The results indicate that multicollinearity and overfitting contribute to a fitted model's sensitivity, leading to strategies for model assessment and selection. 相似文献
14.
15.
Gary R. Mercado Michael D. Conerly Marcus B. Perry 《Quality and Reliability Engineering International》2011,27(8):1131-1144
To measure the statistical performance of a control chart in Phase I applications, the in‐control average run length (ARL) is the most frequently used parameter. In typical start up situations, control limits must be computed without knowledge of the underlying distribution of the quality characteristic. Assumptions of an underlying normal distribution can increase the probability of false alarms when the underlying distribution is non‐normal, which can lead to unnecessary process adjustments. In this paper, a control chart based on a kernel estimator of the quantile function is proposed. Monte Carlo simulation was used to evaluate the in‐control ARL performance of this chart relative to that of the Shewhart individuals control chart. The results indicate that the proposed chart is more robust to deviations in the assumed underlying distribution (with respect to the in‐control ARL) and results in an alternative method of designing control charts for individual units. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
We introduce envelopes for simultaneously reducing the predictors and the responses in multivariate linear regression, so the regression then depends only on estimated linear combinations of X and Y. We use a likelihood-based objective function for estimating envelopes and then propose algorithms for estimation of a simultaneous envelope as well as for basic Grassmann manifold optimization. The asymptotic properties of the resulting estimator are studied under normality and extended to general distributions. We also investigate likelihood ratio tests and information criteria for determining the simultaneous envelope dimensions. Simulation studies and real data examples show substantial gain over the classical methods, like partial least squares, canonical correlation analysis, and reduced-rank regression. This article has supplementary material available online. 相似文献
17.
Brian D. Marx 《技术计量学》2013,55(4):374-381
I extend the concept of partial least squares (PLS) into the framework of generalized linear models. A spectroscopy example in a logistic regression framework illustrates the developments. These models form a sequence of rank 1 approximations useful for predicting the response variable when the explanatory information is severely ill-conditioned. Iteratively reweighted PLS algorithms are presented with various theoretical properties. Connections to principal-component and maximum likelihood estimation are made, as well as suggestions for rules to choose the proper rank of the final model. 相似文献
18.
给出了求解自变量含有类型变量的线性回归模型的树方法。它是一个非参数方法。讨论了修剪树对参数估计和预测的影响,给出了通过修剪树提高参数估计和预测精度的充要条件。 相似文献