共查询到17条相似文献,搜索用时 78 毫秒
1.
为了提高耐摩擦磨损性能,采用磁控溅射技术在γTiAl钛合金表面制备了Al2O3Y2O3/AlY复合涂层。检测了涂层的厚度、表面硬度、微观组织和成分变化。通过在130g、230g和330g载荷下采用GCr15钢球作摩擦副进行的摩擦磨损试验,研究了有和无复合涂层的γTiAl合金的耐摩擦磨损性能。结果表明:Al2O3Y2O3/AlY复合涂层的厚度约为33μm,由Al2O3Y2O3层、AlY层和扩散层组成,平均表面硬度为433.4HV0.1。带复合涂层的γTiAl合金摩擦因数和比磨损率均比无涂层γTiAl合金的小。在不同的摩擦磨损试验载荷下,无涂层γTiAl合金的磨损机制为磨粒磨损和黏着磨损,而有Al2O3Y2O3/AlY复合涂层的γTiAl合金则主要是磨粒磨损和氧化磨损。 相似文献
2.
3.
针对超声电机摩擦驱动的特性,利用大气等离子喷涂技术在45钢表面设计制备不同配比的Al2O3/Ti O2陶瓷涂层。采用X射线衍射仪分析相结构,用扫描电镜表征磨损后涂层表面特征,探讨其磨损机理,在直线型超声电机上测试其磨损性能。结果表明:在高温条件下,Ti O2和Al2O3形成固溶体,而XRD测试时,只能检测到Al2O3的特征峰而Ti O2相消失。五种配比材料中,Al2O3-16%Ti O2涂层的磨损性能优于其他涂层,使用寿命更长。Al2O3-10%Ti O2和Al2O3-13%Ti O2涂层表现出轻微的疲劳磨损机制,Al2O3-16%Ti O2涂层则是轻微的磨粒磨损,而Al2O3-19%Ti O2和Al2O3-22%Ti O2涂层的磨损机制是轻微的脆性断裂。 相似文献
4.
MarquisGary RabbRoger 《现代铸铁》2002,(4):65-65
铸铁件被广泛应用于发电机组和远洋航船用大型柴油机上。当前的趋势是对关键的承受疲劳载荷的零件用球墨铸铁取代灰铸铁。为了充分利用球墨铸铁疲劳强度高的优势,以及确保设计的可靠性,必须对这些大型铸件的典型缺陷和这些缺陷对疲劳极限的影响有更进一步的了解。试验包括恒定振辐轴向载荷,恒定振幅扭转载荷以及简单变振幅载荷,用统计方法对许多不同壁厚的铸件的缺陷进行了评估,基于包括硬度和实际承载面积等参数在内的断裂机理模型与疲劳试验结果比较吻合。对于铁素体-珠光体球墨铸铁,韧性珠光体的硬度也被应用于此模型,模型也建立了扭转持久极限与拉伸持久极限之间的联系。用海夫图给出了持久极限与平均应力之间的方程式。 相似文献
5.
6.
7.
为探索表面ZrO2涂层的球铰副在液压马达中的摩擦学规律,采用摩擦磨损试验机和白光干涉仪模拟ZrO2涂层的球铰副在不同载荷和转速的工况下,球铰副在液压马达中的摩擦磨损变化情况。分别从摩擦因数、磨损体积和磨痕形貌分析其摩擦磨损规律,从中找到最优的工况去提高ZrO2涂层的球铰副寿命和工作效率。通过开展控制变量试验发现:转速对ZrO2涂层的球铰副摩擦学性能的影响远大于载荷,在100 N-100 r/min时摩擦因数最小为0.059 6;磨损体积随载荷和转速的增大而逐渐增大,且在50 N-50 r/min时磨损体积最小为0.184 mm3。综合以上规律发现,载荷100 N和转速50 r/min工况下ZrO2涂层的球铰副减摩抗磨效果最好,低转速能够有效延长液压马达的使用寿命和提高机械效率。 相似文献
8.
在高温磨损试验机上进行TC11合金与GCr15钢在25和600℃的干滑动磨损实验。研究摩擦副(钛合金与对摩钢)的磨损行为,并探讨磨损机制。结果表明:在25℃时,TC11合金具有极高的磨损率并随着载荷快速增加,而GCr15钢的磨损率则随载荷提高略有增加,且处于较低值。在高温600℃时,TC11合金和GCr15钢均表现为随着载荷增加,磨损率变化较小的趋势,且处于极低的值。研究发现高温下摩擦氧化物的形成导致了TC11合金和GCr15钢极低的磨损率。可以认为,在高温下TC11合金与GCr15钢是一种理想的摩擦副。 相似文献
9.
目的研究CrAlSiN涂层分别与304不锈钢、TC4钛合金、Al_2O_3陶瓷和GCr15钢四种不同材料配副时的摩擦学特性。方法采用阴极电弧离子镀技术在M35高速钢上制备了CrAlSiN涂层,采用扫描电镜(SEM)、显微硬度计、划痕仪、球-盘式摩擦磨损试验仪和3D轮廓仪分别测试了涂层的结构和性能。结果 CrAlSiN涂层与304不锈钢、TC4钛合金和GCr15钢配副时的磨损形式为粘着磨损和磨粒磨损,其中与亲和性高的304不锈钢、TC4钛合金粘着磨损严重。CrAlSiN涂层与不锈钢对磨时,摩擦系数最高,达到0.71;与GCr15钢对磨时,摩擦系数最低,但摩擦系数波动大;与钛合金对磨时,摩擦系数介于两者之间。CrAlSiN涂层与亲和性较差的Al_2O_3陶瓷之间的磨损形式为磨粒磨损,随着磨损的进行,摩擦系数逐渐降低。结论 CrAlSiN涂层与亲和性较高的材料对磨时,磨损形式为粘着磨损和磨粒磨损,与亲和性较差的Al_2O_3对磨时为磨粒磨损。 相似文献
10.
目的 研究温度对钛合金表面Al2O3-40%TiO2陶瓷涂层摩擦磨损性能的影响,探讨涂层在高温下的摩擦磨损机理。方法 采用大气等离子喷涂技术(APS)在TC4钛合金表面制备Al2O3-40%TiO2(AT40)陶瓷涂层。采用扫描电子显微镜(SEM)和能量分散谱仪(EDS),对AT40陶瓷涂层中的微观形貌和物相进行定性分析。借助维氏显微硬度计,研究 AT40陶瓷涂层在常温下的截面显微硬度分布规律,以及高温下的显微硬度。采用多功能摩擦磨损试验机,测试AT40陶瓷涂层在200、350、500 ℃下的摩擦磨损性能,并进行原位在线自动3D形貌表征。结果 AT40陶瓷涂层呈典型的热喷涂层状结构,各相分布均匀,涂层结构致密,平均显微硬度相较于TC4钛合金基材提高了81%。AT40陶瓷涂层在200、350、500 ℃下的高温硬度分别为513HV0.3、463HV0.3、448HV0.3。在200、350 ℃时,AT40陶瓷涂层的平均摩擦系数分别为0.18±0.02和0.38±0.03,磨损率分别为(7.8±0.01)×10–5 mm3/(N.m)和(37.2±0.01)×10–5 mm3/(N.m),涂层具有优异的抗高温摩擦磨损性能。500 ℃时,涂层的平均摩擦系数和磨损率分别为0.77±0.02和(134.4±0.01)×10–5 mm3/(N.m),磨痕深度和磨损体积大幅增加,耐磨性能降低。结论 AT40陶瓷涂层在200 ℃和350 ℃的磨损机制主要为微区脆性断裂,在500 ℃时的磨损机制表现为裂纹扩展引起的分层剥落和轻微磨料磨损。 相似文献
11.
为了提高TC4钛合金表面硬度和耐磨性能,通过等离子渗氮技术和多弧离子镀技术相结合的方法对TC4钛合金进行表面改性处理。通过扫描电镜、维氏显微硬度计、三维轮廓仪、高速往复摩擦磨损试验仪和电化学工作站,对比研究了TC4钛合金、渗氮层和CrAlSiN涂层的显微组织、硬度、耐磨性能和耐腐蚀性能。结果表明,经渗氮处理后,TC4合金表面渗氮层硬度提高了约2倍,在此基础上制备的CrAlSiN涂层的平均硬度高达3222 HV0.025,涂层表面存在少许大颗粒和凹坑;CrAlSiN涂层平均摩擦因数为0.22,磨损机理主要为粘着磨损,对磨副的材料粘着到涂层表面,而涂层几乎无磨损,耐磨性能显著提高。CrAlSiN涂层的自腐蚀电位为-0.542 V,比TC4钛合金基体的自腐蚀电位-0.747 V正移了0.205 V,表明在渗氮层基础上沉积CrAlSiN涂层显著提高了合金的耐电化学腐蚀性能。 相似文献
12.
置氢TC4钛合金与Al2O3陶瓷扩散连接工艺研究 总被引:1,自引:0,他引:1
采用直接扩散连接的方法实现了置氢TC4钛合金与Al2O3陶瓷的连接,利用光学显微镜、扫描电子显微镜、能谱分析以及X射线衍射等分析手段,确定了TC4/Al2O3扩散连接接头典型的界面结构为TC4/α-Ti/Ti3Al+Al2TiO5/Al2O3。研究了连接温度对TC4/Al2O3接头界面结构的影响规律,随着连接温度的升高各反应层厚度逐渐增加。基于反应动力学方程,计算了氢含量(质量分数)为0%、0.3%、0.4%时,Ti3Al+Al2TiO5层的反应激活能分别为213、172、152kJ/mol。当连接温度为840℃,连接时间为90min,氢含量为0.4%时,接头抗剪强度达到最大值为128MPa,断口分析表明断裂主要发生在Al2O3陶瓷母材侧。 相似文献
13.
TC4钛合金微弧氧化Cr2O3复合膜的结构及摩擦磨损性能 总被引:1,自引:0,他引:1
在硅酸钠-六偏磷酸钠体系中添加1.5g/LCr2O3微粒,采用直流脉冲模式在TC4钛合金表面制备了微弧氧化Cr2O3复合膜;利用SEM、EDS、XRD对复合膜的微观形貌和结构进行观察分析,并研究了其在室温干摩擦条件下的摩擦磨损性能。结果表明:复合膜的表层孔隙中填满了微小的Cr2O3颗粒,表面只能看到少量微孔;膜层中除了金红石及锐钛矿TiO2相、Al2TiO5相外,还出现了大量的Cr2O3相,且包含了一些非晶态的P、Si化合物。在相同的摩擦磨损条件下,微弧氧化Cr2O3复合膜的摩擦系数更小、磨损量更低、耐磨性也更好。在10N载荷下,复合膜只发生轻微的粘着磨损,几乎未发生磨粒磨损;在50N载荷下,复合膜的磨粒磨损有所加剧,且出现了第二相粒子流失。Cr2O3颗粒主要通过对微弧氧化膜孔隙的填充作用、载荷转移作用及弥散强化作用,来降低复合膜的摩擦系数和表面磨损量,提高其耐磨性。 相似文献
14.
目的 改善钛合金零部件之间因相对滑动造成的磨损,提升钛合金零部件的使用寿命。方法 采用超音速火焰喷涂(HVOF)方法在TC4钛合金表面上制备Cr3C2-NiCr、Ni50和Ni Cr涂层。采用扫描电子显微镜(SEM)、显微硬度计等分析涂层的显微结构及力学性能,采用多功能摩擦磨损试验机及白光共焦三维形貌仪测试和分析不同涂层与TC4钛合金在干摩擦条件下的摩擦学性能。结果 Ni50和NiCr涂层的硬度分别为680HV0.3和438HV0.3,低于Cr3C2-NiCr涂层硬度1 120HV0.3。在高载荷作用下,由于Ni50和NiCr涂层的硬度较低,导致其颗粒界面出现裂纹,断裂韧性测试表现低于Cr3C2-NiCr涂层。3种涂层的摩擦系数及波动均大于TC4钛合金基材。Cr3C2-NiCr涂层对TC4的切削和NiCr涂层对TC4的黏着导致了TC4对磨副的严重磨损。中等硬度的Ni50涂层对TC4的切削和黏着作用分别弱于Cr 相似文献
15.
通过向Ag Cu共晶钎料中添加nano-Al2O3增强相(2%,质量分数)并采用高能球磨的方法获得了Ag Cu+nano-Al2O3复合钎料(Ag Cu C钎料)。采用Ag Cu C钎料实现了TC4合金与Al2O3陶瓷的高质量钎焊连接,确定了TC4/Ag Cu C/Al2O3钎焊接头的典型界面组织结构为:TC4/α-Ti+Ti2Cu扩散层/Ti3Cu4层/Ag(s,s)+Ti3Cu4+Ti Cu/Ti3Cu4层/Ti3(Cu,Al)3O层/Al2O3。Nano-Al2O3的添加抑制了钎缝中连续的Ti-Cu化合物层的生长,同时在钎缝中形成了颗粒状Ti-Cu化合物相增强的Ag基复合材料,改善了钎焊接头的界面组织。随着钎焊温度的升高,各反应层厚度逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag基复合材料组织逐渐细小。当钎焊温度T=920℃,保温时间t=10 min时接头抗剪强度达到最大为67.8 MPa,典型断口分析表明:压剪过程中,裂纹起源于钎角处并沿钎缝扩展后转入Al2O3陶瓷,最终在Al2O3陶瓷母材侧发生断裂。 相似文献
16.
目的 改善Ni-P-纳米Al2O3复合镀层的均匀性,提高其耐蚀性能.方法 采用化学镀法在Q235钢表面制备Ni-P纳米Al2O3复合镀层,分析纳米Al2O3添加量(0~10g/L)对镀层形貌的影响.施镀过程中选用不同种类的表面活性剂来分散纳米Al2O3,通过XRD分析镀层的相组成,采用SEM、EDS研究镀层形貌和成分,通过测量施镀前后纳米Al2O3的Zeta电位来研究非均一镀液的稳定性和纳米粒子的分散性能,利用电化学阻抗手段研究镀膜样品在3.5%NaCl水溶液中的耐蚀性能,从而分析镀液中表面活性剂的种类和用量对复合镀层的影响.结果 随着镀液中纳米粒子添加量的增加,镀层中Al2O3含量先增加后趋于稳定,同时镀层表面纳米Al2O3团聚现象也随之加剧.添加一定量表面活性剂之后,镀层变得均匀,纳米粒子团聚减少,其中阳离子表面活性剂(十六烷基三甲基溴化铵)在低浓度下就能对纳米Al2O3分散产生显著作用,而阴离子表面活性剂(十二烷基苯磺酸钠)需在较高浓度下才能达到相似效果.结论 当镀液中阴离子表面活性剂用量为1.25cmc,Al2O3添加量为6g/L时,镀层最为均匀,且样品在3.5%NaCl水溶液中耐蚀性能最好. 相似文献
17.
目的提高304不锈钢减摩耐磨性能。方法使用LDM-8060型半导体激光加工系统,制备出三种不同配比的Ti_3SiC_2-Ni基自润滑耐磨复合涂层。使用X射线衍射仪(XRD)、扫描电镜(SEM)及其自带的能谱仪(EDS)对304不锈钢与Ti_3SiC_2-Ni基涂层进行表征,并系统地分析其在室温和600℃下的摩擦学性能和磨损机理。结果复合涂层主要由Cr0.19Fe0.7Ni0.11固溶体,硬质相Fe_2C、Cr_7C_3和Ti C,润滑相Ti_3SiC_2组成。其平均显微硬度分别为451.14、419.33、359.92HV0.5,明显高于304不锈钢基体的平均显微硬度(238.91HV0.5)。室温下,Ti_3SiC_2-Ni基复合涂层摩擦系数的平均值分别为0.41,0.46和0.48,磨损率分别为6.37×10~(-5)、16.52×10~(-5)、4.16×10~(-5) mm~3/(N·m),均低于304不锈钢(0.56、46.35×10~(-5) mm~3/(N·m))。在600℃下,Ti_3SiC_2-Ni基复合涂层的平均摩擦系数分别为0.38,0.43和0.41,磨损率分别为12.51×10~(-5)、7.58×10~(-5)、7.79×10~(-5)mm~3/(N·m),也均低于304不锈钢(0.66,24.25×10~(-5)mm~3/(N·m))。结论在室温和600℃下,Ti_3SiC_2-Ni基复合涂层能有效地提高304不锈钢的显微硬度,进而提升其摩擦学性能。其中添加10%Ti_3SiC_2的Ti_3SiC_2-Ni基复合涂层在600℃下表现出最好的耐磨性,而添加5%Ti_3SiC_2的Ti_3SiC_2-Ni基复合涂层在室温和600℃下表现出最好的减摩性能。 相似文献