首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
杨建  崔晓萍  汪送 《爆破器材》2018,47(4):44-48
为了考察某型强光爆震弹的使用可靠性,分别选用储存期内、满储存期和超储存期的弹药为样本,通过高速摄影机、SEM、DSC、光强仪及声级计等对其发火机构的点火可靠性、主装药状况及作战效果等进行表征和测试。结果表明:经5 a储存后,击发机弹簧扭矩势能、点火管火焰长度和延期时间的平均值分别为0.455 N·m、305mm和3.31 s,均能保证弹药击发时的可靠点燃;主装药的SEM图表明,各组分经长期储存后依然分散均匀,没有出现明显的质量变化;DSC曲线中,主装药储存前、后的熔点位移幅度小于2℃,表明该配方具有良好的安定性能;声压和光强的测试表明,二者均随时间的延长而略有衰减,但在5 a的使用期内,均能达到战术技术指标要求。以上研究表明该型强光爆震弹在使用年限内具有极高的可靠性,且使用期有延长的可能。  相似文献   

2.
为研究叠氮硝胺发射药与赛璐珞药盒的长储稳定性,采用差示扫描量热法(DSC)和真空安定性法(VST)研究分析了叠氮硝胺发射药与赛璐珞片的化学相容性,采用GJB736.8—1990火工品试验71 ℃试验法研究分析了叠氮硝胺发射药与赛璐珞药盒之间的组分迁移性。DSC试验表明,叠氮硝胺发射药与赛璐珞片混合体系的热分解峰温降低,降低值为0.5 ℃,混合体系相容;VST试验表明,混合体系净增放气量R为0.3 mL/g,混合体系相容;71 ℃试验法储存26 d后,叠氮硝胺发射药中的增塑剂(DIANP、NG)质量分数由39.82%降低到33.67%,药盒中增塑剂(DIANP、NG)质量分数由0增加到33.89%,发射药与药盒之间存在增塑剂的迁移。叠氮硝胺发射药与赛璐珞药盒化学相容性良好,但物理安定性差,存在增塑剂的迁移,加速老化10 d后,体系浓度达到平衡。  相似文献   

3.
对19孔的高能发射药进行落锤撞击试验,观测药粒撞击损伤状态以及F-t曲线,研究药粒受力方向、撞击能以及温度等对高能发射药动态力学强度的影响。结果表明,改变受力方向,裂纹和破碎均在沿发射药的轴线方向上出现,表明发射药力学强度的各向异性;因为受径向撞击作用时,发射药粒易于破碎,故装药设计时,可使发射药的主要受力方向为轴向排布,可有效防止发射药的撞击破碎。随着撞击能提高,发射药的损伤百分数增加,F-t曲线上峰值逐渐增大,增大的幅度不断减小。随着温度升高,F-t曲线峰值由25.0 k N降为5.8 k N,脉宽由1.6 ms增加至5.1 ms,发射药的响应情况由脆性断裂逐渐转变为塑性形变。  相似文献   

4.
为定量表征发射药的破碎程度,引入了燃气生成速率比的概念。通过理论推导,得出燃气生成速率比即为破碎发射装药与相应未破碎发射装药的燃烧表面积比。提出采用破碎发射药燃烧前期的燃气生成速率比的平均值来定量表征发射药的破碎程度。对标准发射药、大块发射药、小块发射药和粉末发射药进行了密闭爆发器试验,获得了不同发射药的p-t曲线,数据处理得到不同发射药破碎程度的量化值。结果表明,基于燃气生成速率比的发射药破碎程度定量表征方法是可行的。  相似文献   

5.
胡敏恩  李芳  宋立骞  刘大斌  潘峰  钱华 《爆破器材》2021,50(3):55-59,64
弹药装配过程中需要控制湿度以避免静电危害。为了确保火炸药安全储存寿命预估的准确性,加速老化试验中应加入湿度条件。以某双基发射药为研究对象,以装药工房湿度上限(相对湿度75%)作为其老化湿度条件,考察湿度封装及裸药干燥条件下样品的失效模式及预估寿命。结果表明:两种试验条件下,样品的机械感度、热分解温度均无显著变化;初始燃速随老化时间的增加而增大,但达到的最大压力不变;安定剂含量随老化时间的增加而明显下降。以安定剂质量分数消耗50%为失效判据,该双基发射药30 ℃、75%湿度封装与裸药干燥条件下的安全储存寿命分别为9.7 a和11.4 a,表明壳体内的微湿度环境对药剂的安全储存寿命具有显著影响。  相似文献   

6.
《工程爆破》2022,(6):14-19
为了研究混入煤粉的铵油炸药的相容性以及煤粉与铵油炸药之间的相互作用,采用差示扫描量热仪(DSC)研究了铵油炸药、混入煤粉的铵油炸药、硝酸铵和混入煤粉的硝酸铵的热分解特性。用Kissinger方程求解了铵油炸药和混入煤粉的铵油炸药的表观活化能(E_a),考察了煤粉与铵油炸药的化学相容性。研究结果表明:在常压氮气氛围的环境中,铵油炸药和硝酸铵的DSC曲线中的热分解均为吸热峰;当煤粉和硝酸铵混合后,煤粉与硝酸铵会在硝酸铵的热分解温度之前发生化学反应,随着煤粉含量的提高,硝酸铵的热分解逐渐转变为放热峰,说明煤粉能极大地降低硝酸铵的热稳定性;使用DSC法研究混入煤粉的铵油炸药相容性等级为4级,煤粉与铵油炸药的相容性差。  相似文献   

7.
为了研究混入煤粉的铵油炸药的相容性以及煤粉与铵油炸药之间的相互作用,采用差示扫描量热仪(DSC)研究了铵油炸药、混入煤粉的铵油炸药、硝酸铵和混入煤粉的硝酸铵的热分解特性。用Kissinger方程求解了铵油炸药和混入煤粉的铵油炸药的表观活化能(E_a),考察了煤粉与铵油炸药的化学相容性。研究结果表明:在常压氮气氛围的环境中,铵油炸药和硝酸铵的DSC曲线中的热分解均为吸热峰;当煤粉和硝酸铵混合后,煤粉与硝酸铵会在硝酸铵的热分解温度之前发生化学反应,随着煤粉含量的提高,硝酸铵的热分解逐渐转变为放热峰,说明煤粉能极大地降低硝酸铵的热稳定性;使用DSC法研究混入煤粉的铵油炸药相容性等级为4级,煤粉与铵油炸药的相容性差。  相似文献   

8.
目的为解决当前发射药包装物材料存在的结构复杂、自重大、难以适应包装工艺自动化的突出问题,选用一种可塑性较强的改性HDPE塑料作为代替材料。方法利用差热扫描量热仪和真空安定性试验仪研究了改性HDPE塑料与典型发射药的相容性;采用加速热老化试验研究了改性HDPE塑料的力学性能变化,并预测了其热老化寿命;通过弹道射击试验研究了经过500km公路运输和自由跌落后,改性HDPE塑料内装发射药的内弹道性能变化。结果实验结果表明,改性HDPE塑料与典型发射药的相容性较好;进行加速热老化试验后,拉伸强度无明显变化,冲击强度出现下降趋势;在25℃贮存条件下,平均热老化寿命为17.51年;经运输、自由跌落试验后,改性HDPE塑料对内装发射药的保护性较好,内弹道性能无明显变化。结论改性HDPE塑料可作为发射药用包装箱的主要材料。  相似文献   

9.
目的为解决当前发射药包装物存在的结构复杂、自重大、难以适应包装工艺自动化的突出问题,提高对发射药包装、贮存、运输、使用过程的适应性,设计一种结构合理、防护可靠的新型发射药包装物。方法根据发射药包装物技术要求,进行包装物材料选用和结构设计,通过性能研究,全面考核新型发射药包装物的相容性、防静电性能、老化性能、力学性能、密封性能、环境适应性、防拆封功能等。结果实验结果表明,设计和研制的新型发射药包装物与内装典型发射药相容性良好;表面电阻率为1.37×106~7.23×108Ω;在25℃贮存条件下,平均热老化寿命为17.51年;新型发射药包装物配质量为45kg,堆码3层,未出现倒垛、变形及破损现象;包装物经高温、低温、温度冲击后无变形、失效、永久硬化,且表面无裂解;密封性良好,可有效防止非正常拆封。结论该新型发射药包装物可实现对现有包装物的替代,可在火炸药行业推广应用。  相似文献   

10.
采用水溶液聚合法制备了低分子量聚丙烯酸钾(PAAK),并作为新型消焰剂加入单基发射药中。通过火焰原子吸收光谱法测试了PAAK中钾的含量;用乌氏黏度计测定了特性黏度;采用DSC法研究不同pH值的PAAK与硝化棉(NC)的相容性;利用充氮氧弹法对添加PAAK、硝酸钾KNO3、硫酸钾K2SO4的单基发射药的燃烧残渣进行了对比研究。结果表明,合成的PAAK中,钾的质量分数为15.21%,相对分子量在3 000左右,有利于和NC均匀混合,且在中性或微碱性(pH=7.0~7.5)的情况与NC相容性良好。与传统的KNO3、K2SO4消焰剂相比,PAAK能够和NC均匀混合,制备均质透明的单基发射药;PAAK发射药的燃烧残渣最少,占发射药质量的0.18%。  相似文献   

11.
针对前混合式磨料水射流切割防暴弹的过程,分析磨料水射流对装药的切割安全性,探讨射流参数的选取及工程化处废的可行性。根据弹性力学的固体接触理论,建立磨料水射流冲击弹体时的数学模型,从而选取射流出口压力等工艺参数。依据射流的冲击理论和装药的热感度及撞击感度,结合射流作用时的升温试验,分析证实在该射流参数下的冲击安全性。结果表明,以手投催泪(或发烟)弹、枪射催泪(或发烟)弹为代表的4种防暴弹,其试验结果与实例计算相吻合,切割安全可靠度不低于98.57%。该研究可为防暴弹的工程化处废提供理论依据和技术支持。  相似文献   

12.
以30 mm高压模拟炮为试验平台,以单基发射药为参照,研究了3种典型叠氮硝胺(DIANP)发射药的动态燃烧稳定性,分析了配方组成对DIANP发射药起始燃烧特征、膛内压力上升过程及膛内压力波动的影响,探讨了DIANP发射药配方组成与其起始燃烧特征、膛内压力上升特点和压力波强度的相互关系。结果表明,在DIANP发射药配方中添加质量分数30%的固体组分黑索今(RDX)或硝基胍(NGU),发射药膛内动态燃烧稳定性增加,膛压-时间曲线波动减小,膛压从30 MPa增至50 MPa所需的时间分别增加了92%和78%,起始负压差从-40.7 MPa降低至-4.44 MPa和-10.66 MPa。在DIANP发射药体系引入高含量的固体组分RDX或NGU,由于低压下RDX分解前熔融吸热,而NGU火药燃烧表面存在坚实熔融层,均可有效减小DIANP发射药起始燃气的生成速率,降低发射装药起始燃气生成猛度,缓减起始阶段膛内压力的上升,提高药床起始燃烧一致性,减小膛内压力波强度。  相似文献   

13.
研制含单基药、双基药的高爆速震源药柱,并对其制造工艺进行了研究.讨论该震源药柱高爆速产生的机理,研究了炸药的配比、炸药的密度对震源药柱性能的影响,测试了震源药柱的各项性能指标.结果表明,该震源药柱制造工艺简单、密度高,各项性能优于国标高爆速震源药柱指标.为处理废弃发射药、充分利用废弃高含能材料开辟了一条新的途径.  相似文献   

14.
针对环切杆状发射药装药,设计了两种点传火方案进行试验验证:方案1#是中心传火管;方案2#是在中心传火管上端增加一个点火药包,以便加强弹丸底部装药的点火。通过100 mm火炮弹道试验负压差的分析,两种点传火方案均能满足点传火技术要求,方案2#负压差较方案1#负压差小,射击安全性提高。对点火延迟时间的分析发现,点火延迟时间越短,起始燃气生成速率越高,越易生成较大的压力波。  相似文献   

15.
目的 提出一种测量自行火炮铅垂方向重心位置的实验方法 .方法 使自行火炮沿射向倾斜一角度 ,用称重传感器测出火炮一端的重量 .结果 用一例题验证了文中方法和原理的正确性 .结论 所述方法正确可行  相似文献   

16.
为了降低发射药的敏感性,以Bu-NENA为增塑剂,FOX-7和RDX作为填充物研制了一种新型硝化棉(NC)基发射药(GD-3发射药),对其装药进行了低易损性能测试研究。试验结果表明,GD-3发射装药在慢速烤燃和快速烤燃、子弹撞击刺激源下发生了V类燃烧反应,在特定的空心装药射流刺激下发生了III类爆炸反应。GD-3发射药在刺激源下易损性响应剧烈程度弱于硝基胍发射药和单基发射药,该新型装药符合低易损性弹药的性能评定要求。  相似文献   

17.
为了研究一种具有高能、高燃速特性的新型发射药,在高能发射药的配方体系中添加了两种高燃速功能材料乙二胺-三乙烯二胺高氯酸盐(SY)和硝酸肼镍(NHN)。利用密闭爆发器试验研究高燃速功能材料对高能发射药燃速特性的影响规律,并考察其对高能、高燃速发射药综合性能的影响。采用中止燃烧试验和SEM探索了燃速提高的机理。结果表明,添加质量分数3%的SY或NHN可以有效地提高发射药的燃速,使燃速分别提高了31.8%、17.8%,SY对燃速的提高效果更为显著;高能、高燃速发射药的火药力为1 200 J/g左右,具有较高的能量特性;在20 ℃和-40 ℃下,NDCS-02(含SY)的抗冲强度分别为73.89 kJ/m2和7.12 kJ/m2,NDCN-02(含NHN)的抗冲击强度分别为未断和6.60 kJ/m2,力学性能优良;NDCS-02和NDCN-02的撞击感度分别为19.0、22.4 cm,摩擦感度分别为84%、90%,都可以满足应用要求;NDCS-02和NDCN-02化学安定性测试的放气量分别为1.15、1.79 mL/g,安定性较好。中止燃烧试验和SEM的测试结果表明,高燃速功能材料先于发射药基体燃烧,使燃烧过程中燃面增加,从而提高燃速。  相似文献   

18.
The subjects of this paper are the historical overview and development of the high-velocity gas-dynamics gun. These are guns that derive their energy from a reservoir of compressed gas. Other 3uns derive their energy from electricity or from high explosive. Their historical overviews and developments are covered in papers by Mr. William Weldon and Mr. Alex Wenzel.

The gas dynamics gun is viewed first from the standpoint of modern technology. An idealized configuration, the “Reference Gun”, is analysed in order to quantify the effects of gun diameter and length, projectile mass, and propellant gas pressure and composition. The analysis assumes that the propellant is an ideal gas, and formulae are derived for the base pressure and velocity of the projectile as functions of the size and loading parameters of the gun. The analysis demonstrates that the prime requirements for high velocity are a high gas pressure, a low molecular weight gas, a light projectile, and a long gun.

The history of guns is reviewed briefly from 14th century black-powder muzzle-loaders to 20th century, nitrocellulose -propellant, breech-loaded guns. The velocity limit of the modern gun is shown to be around 3 km/s, if the gun is loaded with nitrocellulose propellant and is very long (200 calibers). However, if the gun is loaded with hydrogen and the length doubled, it is shown that the velocity limit can be increased to 7 km/s, thus approaching current needs.

The problem of using hydrogen has been solved by the invention of the piston-compression light-gas gun (PCLGG). However, the limited strength of the fragile, sabot-model projectiles of experimental research has capped the maximum acceleration and has placed a demand on the gun's operating cycle to generate a constant pressure at the base of the projectile for the launching run. This second problem has been partially solved by the invention of a modification to the PCLGG known as the piston-compression, accelerated-reservoir, light-gas gun (PCARLGG). Both the PCLGG and the PCARLGG are described. The performance of the PCARLGG has been analyzed by a hydrocode developed for this purpose, and the results of the calculations are presented and compared with experiment.

The concept of a frictionless, adiabatic “Ideal Gun” is introduced in order to simplify the analysis of performance. It is shown that the performance of any ideal gun is given by a simple equation involving two dimensionless parameters that relate the projectile's velocity to its mass, its average base pressure, and the diameter and length of the gun. Based on the ideal gun equation, the maximum operating velocity of the gas-dynamics gun is estimated to be about 12 km/s.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号