首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于小波的Web流量组合预测方法研究   总被引:2,自引:0,他引:2  
为了提高Web流量的预测精度,提出一种基于小波、神经网络和自回归的组合预测方法.首先将Web流量构造为2个相关序列:历史序列和相似值序列;对具有平稳特征的相似值序列用AR模型进行预测;对体现了Web流量非线性、非平稳特性的历史序列则经过小波分解与单支重构后,针对各分支特点分别采用神经网络和自回归模型预测;最后组合2条序列的预测结果获得最终预测值.理论分析与实验表明:组合预测方法可以充分利用与流量相关的多种数据关系;小波分析可以将历史序列分解为多层频率成分更加单纯、更加易于预测的时间序列.因而所建方法比传统的预测方法具有更高的预测精度.  相似文献   

2.
为解决先验数据有限且存在大量不确定因素情况下,城市轨道交通周边房地产价格的预测问题,提出一种基于BP神经网络与马尔可夫链的组合预测模型。首先,采用BP神经网络,使用较少量的样本数据完成城市轨道交通周边房地产价格曲线的粗略拟合;在此基础上,借助马尔可夫链进行系统状态划分,缩小预测区间以提高预测精确度;最后,运用基于BP神经网络与马尔可夫链的组合模型,对北京市轨道交通13号线周边房地产价格进行了预测分析。计算结果表明,该模型具有较高的精度和可靠性。  相似文献   

3.
要对非线性趋势房地产价格指数进行预测,就必须利用模拟非线性的模型。应用BP神经网络来对房地产价格指数进行预测,精度和收敛的速度都不是很理想,这主要是因为BP神经网络本身存在着缺陷。为了克服BP神经网络的缺陷,本文将小波变换和BP神经网络结合起来,运用小波神经网络来对房地产价格指数进行预测,并与BP网络的预测结果进行了比较,最后发现用小波神经网络进行经济预测可以达到很好的效果。  相似文献   

4.
基于组合预测法的台州市需水量预测研究   总被引:1,自引:0,他引:1  
运用多种预测方法的组合预测,采用BP神经网络法、人均综合用水量法对台州市2020年、2030年总需水量进行了预测;采用人均用水量推算法、灰色预测法、数学模型法预测台州市2020年、2030年城乡生活需水量、工业需水量、第一产业需水量等分类需水量.结果表明,组合预测方法应用于台州市用水需求预测是可行的.组合预测综合考虑了各种因素的影响,能够提高需水量的预测精度,为水资源合理规划提供了科学决策依据.  相似文献   

5.
目的 通过对退火炉炉温控制系统的设计,使得控制系统的控制性能和控制精度提高、抗干扰性增强.方法 针对被控对象一退火炉本身的非线性、大滞后性、时变性等特点,采用把小波函数引入神经网络预测模型对退火炉温进行预测,再把此预测模型与BP神经网络控制器相结合对退火炉的脉冲燃烧器进行控制,进而控制炉温.结果 由小波神经网络预测模型组成的控制系统,综合了小波分析和传统神经网络的优点,且具有不断吸收环境新信息的函数学习能力和推广能力.从仿真曲线上看,此控制方法 相比较传统控制的方法 具有收敛速度快,预测精度高的特点.结论 实现了对具有大干扰、大滞后性和不确定随机干扰因素的炉温控制系统进行精确控制,具有良好的动态和稳态性能.  相似文献   

6.
交通发生吸引量预测是交通规划四阶段的首要步骤,其预测结果是城市规划布局及交通设施建设发展的重要依据.为了提高交通发生量预测准确性,利用K-means聚类分析对交通小区进行分组;对同组内样本小区各项土地利用及人口就业指标进行主成分分析,通过计算主成分载荷率为选择预测影响因素提供依据;针对各组样本分别建立BP神经网络模型,以土地利用和人口数据作为输入变量,小区交通发生量作为输出变量,以大连市城市交通调查数据为例对上述方法进行检验,并与传统回归模型预测结果进行比较.结果表明,在数据预处理基础上建立的BP神经网络模型具有较高预测精度.  相似文献   

7.
基于BP神经网络的交通数据序列动态可预测性分析方法   总被引:2,自引:0,他引:2  
为了进一步改善交通数据序列短时多步预测的效果,提出了交通数据序列动态可预测性分析的思想,在设计了交通数据序列动态可预测性关联数据特征指标的基础上,基于BP神经网络建立了交通数据序列动态可预测性分析方法,运用某城市快速路主线与匝道车辆检测器的实际数据对该方法进行了验证,并与不同固定预测步数条件下的预测效果进行了对比分析.结果表明,所提出的方法能对交通数据序列的可预测性进行在线分析,在保持预测精度的情况下,可最大限度地增加交通数据短时预测的步数.  相似文献   

8.
基于自适应小波神经网络的复杂系统模式识别方法   总被引:1,自引:0,他引:1  
针对传统神经网络应用于复杂系统建模和辨识中存在的训练效率、精度瓶颈问题,提出了一种自适应小波神经网络方法(adaptive wavelet neural network,AWNN).首先,通过设计自适应层、综合层,使神经网络能根据待处理的系统的样本数据特征自适应工作于最佳工作区间;然后,通过将小波分析方法与对经典的基于误差反向传播算法的神经网络(back propagation neural network,BPNN)、径向基神经网络(radical basis function neural network,RBFNN)结合,保留了上述方法的优点,克服了传统神经网络方法各自的问题;最后,通过对BPNN、RBFNN和AWNN方法进行计算机仿真实验,验证了各算法的可行性、可达性和算法参数特性.实验结果表明:AWNN方法具有更快的收敛速度、更高的精度和更好的鲁棒性.  相似文献   

9.
针对风力发电场风力不可控、风况复杂和数据的非平稳性现状,利用风力发电场SCADA大数据,对风力发电机组进行分析,提出一种基于小波分析和神经网络的智能算法,通过分析风力发电机相关故障信号的特征,实现对风力发电机的故障诊断和预测。最后对大熊山风电场2MW 风力发电机组运行数据进行仿真和分析,仿真结果表明,小波神经网络是一种风力发电机故障诊断和预测的有效方法。  相似文献   

10.
为了解决短期电力负荷不同预测方法的预测角度片面性、预测精度差等问题,提出了基于小波神经网络(WNN)的组合预测模型.首先用小波神经网络预测模型和历史平均模型分别进行预测,然后再通过小波神经网络对两单一模型的预测值进行组合.相比BP神经网络组合模型,该组合预测模型的预测精度大大提高.该模型同时引入模糊聚类分析的方法选取组合模型的训练样本,减少了训练样本的冗余性,提高了预测模型的精度.  相似文献   

11.
基于支持向量机方法的短时交通流量预测方法   总被引:11,自引:4,他引:11  
在总结已有多种预测模型的基础上,充分考虑了交通本身所存在的非线性、复杂性和不确定性,提出了一种基于支持向量机的短时交通流量预测模型。实例数据验证结果和基于BP神经网络的预测模型的对比结果表明,该模型在精度、收敛时间、泛化能力、最优性等方面均优于基于BP神经网络的预测模型。  相似文献   

12.
针对已有基于改进动态递归神经网络预测方法的不足,并充分考虑交通流本身所存在的复杂性、非线性和不确定性特点,提出了一种基于可变增益Elman神经网络的交通量短时预测方法。该方法通过引入一个基于实时误差分析的可变增益因子,实现了网络的实时更新。通过长春市人民大街的实测数据对方法进行了验证。试验结果表明,本文方法在网络收敛时间和预测精度方面均优于已有的基于Elman神经网络的预测模型。  相似文献   

13.
针对交通流的含噪混沌特征,提出了一种基于小波回声状态网络的交通流多步预测模型。该模型利用小波多尺度分解方法,屏蔽了噪声成分对交通流动力学特性的干扰,同时提取了占有交通流绝大部分能量的混沌低频成分。在采用多路分量并行预测的方式下,充分发挥了回声状态网络对混沌低频分量的强大多步预测能力,从而保障了交通流多步预测的精度。对北京市西直门桥的实测交通流的预测结果表明:该模型的多步预测精度比传统的回声状态网络模型有了较大幅度的提升,在保证预测精度的前提下,最大可预测的步长也相应的增加。  相似文献   

14.
提出了一种基于KSOM-BP神经网络的交通流短时预测模型。利用基于核函数的样本自组织映射神经网络(KSOM),在没有任何先验知识的情况下,自组织、自学习地将具有相似统计特性的历史样本划分成一类,促使分类样本统计特性更集中显著。对每个类别的样本分别建立动量-自适应学习速率的BP神经网络预测模型,以期提高交通流短时预测精度,减少预测时间。结合实际城市道路数据对模型进行验证。验证结果表明:KSOM-BP神经网络的预测误差统计指标MARE小于7%,比基于全部样本训练的BP神经网络的MARE减少4%左右;同时,KSOM-BP神经网络建模时间更短,证明了本文方法的有效性和先进性。  相似文献   

15.
为对畸形波这类突发性事件进行较为准确的预报,避免畸形波对海上建筑物和人员安全产生的巨大危害.采用紧致型小波神经网络模型,根据某岛礁地形实测数据建立的岛礁三维模型中测得的波高试验数据,选取试验数据中3种典型波高时间序列分别实现了包含畸形波的波浪数据对常规波浪的预报、包含近似畸形波的波浪数据对畸形波的预报以及常规波浪对包含...  相似文献   

16.
风电功率预测的准确性对风电大规模接入的电力系统安全稳定运行具有重要意义。提出一种基于小波变换和BP神经网络的风电功率预测模型,通过小波变换将风电功率序列在不同频率上进行分解,对分解后的单支序列分别采用相匹配的BP神经网络进行建模和预测,最后,叠加各序列的预测结果得到完整的预测值。基于该模型的内蒙古某风电场输出功率预测算例结果表明:该模型可以有效提高预测精度。  相似文献   

17.
为了满足交通管理对路网可靠性分析的需要,提出交通运行可靠性的概念。在对路网进行层次划分的基础上,构建了分时可靠度和全时可靠度两个路网交通运行可靠性的特征量。根据最小路集法设计了OD对间子路网交通运行分时可靠性分析方法。利用全局扫描法设计了路网交通运行全时可靠性分析方法。实证分析表明,所设计的方法能够分别对路网的全时和分...  相似文献   

18.
基于遗传算法的小波神经网络交通流预测   总被引:3,自引:0,他引:3  
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA WNN预测模型对短时交通流的预测的有效性.  相似文献   

19.
基于遗传算法的小波神经网络交通流预测   总被引:1,自引:0,他引:1  
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键.基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA-WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷.仿真实验验证了GA-WNN预测模型对短时交通流的预测的有效性.  相似文献   

20.
为了降低路网的拥挤度,提出了路网交通状态平衡控制方法。以交叉口最大饱和度代表交叉口交通状态,以路网最大饱和度最小为目标建立了路网交通状态平衡控制双层规划模型。利用遗传算法求解该规划模型,优化算法可以同时优化信号周期和各相位绿信比。考虑到整体延误、交通状态以及各个交叉口的重要度,对平衡控制方法进行了改进。数值模拟结果表明,本文方法可以在一定程度上降低关键区域的拥挤度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号