首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于序批式摇瓶实验研究了pH、NO_3~--N、底物浓度(BrO_3~-、ClO_4~-初始浓度)对氢自养反硝化菌同步降解水中BrO_3~-和ClO_4~-的影响。结果表明:氢自养还原反应的最佳pH为7.0~7.5,pH过高或过低均会对BrO_3~-和ClO_4~-的还原产生抑制作用。NO_3~--N为5 mg/L时,氢自养反硝化菌对BrO_3~-和ClO_4~-降解率最大。氢自养微生物降解BrO_3~-和ClO_4~-有一定的浓度限制,浓度过高或过低均会降低BrO_3~-和ClO_4~-的降解效果。  相似文献   

2.
针对污水处理厂二级生化出水硝酸盐氮浓度高的问题,选用高效硫自养反硝化菌,构建以生物陶粒为填料的自养反硝化滤池,模拟生活污水二级生化出水,调节运行参数,考察脱氮效果。结果表明,滤池经过10 d 200 mg/L NO_3~--N培养液的间歇培养和15 d 100 mg/L NO_3~--N连续进水驯化后挂膜成功,NO_3~--N去除率稳定在90%以上;在HRT为12 h下,滤池对进水NO_3~--N质量浓度为30 mg/L去除效果最好,NO_3~--N和TN去除率分别达到96%、93%,出水NO_2~--N含量1 mg/L以下,但硫酸盐浓度为500~600 mg/L;进水NO_3~--N质量浓度30 mg/L,HRT为2~12 h时,滤池对NO_3~--N去除率均可达85%以上,HRT2 h脱氮性能下降,最佳HRT为2 h;滤池反硝化脱氮率沿填料厚度的增加而逐渐增加,HRT为12 h时在填料高度5 cm处即可达到70%的NO_3~--N去除率。  相似文献   

3.
为了考察硫磺/石灰石自养反硝化系统的脱氮性能,并探究系统N_2O的产生和排放规律,采用均匀填充的上流式硫磺/石灰石生物滤池反应器,研究了2组HRT下,不同进水NO_3~--N浓度对系统脱氮效果的影响及N_2O的排放规律。结果表明,进水NO_3~--N浓度为(54.46±1.15)mg/L、HRT为2.5 h时,反应器容积负荷最大且对NO_3~--N去除率最高,可达99.93%,系统无NO_2~--N累积,出水N_2O低于0.86 mg/L;另外,研究发现NO_3~--N浓度随反应器高度增加而逐渐降低,N_2O浓度随着反应器下部NO_2~--N的富集逐渐增加,并随上部NO_2~--N的还原而逐渐减小;进水NO_3~--N浓度增大,N_2O累积量峰值点沿反应器高度逐渐上移,因此该系统仅能处理较低浓度NO_3~--N废水。  相似文献   

4.
采用升流式厌氧流化床反应器,研究高浓度厌氧氨氧化工艺的脱氮效能。接种普通好氧活性污泥,以低浓度配水(NH_4~+-N 60 mg/L,NO_2~--N 50 mg/L)驯化厌氧氨氧化菌,经150 d富集,填料表面形成红色生物膜,NH_4~+-N和NO_2~--N同步去除率高于80%,反应器成功启动;采用低基质进水(NH_4~+-N 60~300 mg/L,NO_2~--N 100~355 mg/L),随着进水容积负荷的增加,总氮去除负荷从0.39 kg/(m~3·d)提升至1.29 kg/(m~3·d);采用高基质进水(NH_4~+-N 390 mg/L,NO_2~--N 400 mg/L)时,总氮去除负荷降至1.08 kg/(m~3·d),150%回流能有效缓解基质对厌氧氨氧化菌的活性抑制,反应器总氮去除负荷逐渐恢复并升高至1.76 kg/(m~3·d),脱氮效能提高63%。  相似文献   

5.
从厌氧污泥中分离出一株氢自养反硝化细菌S1,通过模拟地下水环境,考察了硝酸盐浓度、碳源投加量、pH、温度、SO_4~(2-)浓度对该菌株脱氮性能的影响。结果表明,菌株S1为陶厄氏菌属,反硝化过程中最适碳源投加量为0.5 g/L。当NO_3~--N质量浓度100 mg/L,pH=6或SO42-质量浓度90 mg/L时,菌株对NO_3~--N的去除均受到抑制。pH在7~10范围内,随着pH升高,菌株反硝化速率增大;温度在10~30℃范围内,温度越高,菌株反硝化速率越快。  相似文献   

6.
以完全自养亚硝化颗粒污泥为对象,控制进水NH_4~+-N的质量浓度为80 mg/L,以乙酸钠为碳源,改变进水COD/ρ(TN),考察有机物添加对亚硝化颗粒污泥NH_4~+-N降解性能、产物组分的影响,系统阐述了进水COD/ρ(TN)对亚硝化颗粒污泥性能、不同氮形态变化规律和产物中ρ(NO_2~--N)/ρ(NH_4~+-N)的影响。结果表明,随着COD/ρ(TN)提高,运行周期数增加,NH_4~+-N降解速率下降,NO_2~--N比生成速率和NO_3~--N比生成速率下降,且NO_3~--N比生成速率受抑制更加显著,改变了产物中NO_3~--N和NO_2~--N的组分,导致对亚硝酸盐累积率反而有提高,产物中ρ(NO_2~--N)/ρ(NH_4~+-N)保持在1.0~1.3内的持续时间增加,有利于为后续厌氧氨氧化脱氮提供良好的基质条件。  相似文献   

7.
采用人工快渗滤池处理低基质含量污水,考察了进水NO_2~--N、NH_4~+-N含量对厌氧氨氧化(ANAMMOX)脱氮性能的影响。结果表明,人工快渗滤池在进水ρ(NO_2~--N)/ρ(NH_4~+-N)为1.3时ANAMMOX脱氮效果最佳,NH_4~+-N、NO_2~--N、TN平均去除率分别高于98%、98%、91%。对ANAMMOX活性开始产生抑制作用的NH_4~+-N、NO_2~--N质量浓度分别约为65、40 mg/L。提高进水NH_4~+-N、NO_2~--N的质量浓度分别至100、50 mg/L时,ANAMMOX性能受到严重抑制,TN平均去除率分别降至62.2%、45.7%。受NO_2~--N严重抑制时,降低进水NO_2~--N的质量浓度至26 mg/L运行21 d后,TN去除率可恢复至受抑前的84.9%;受NH_4~+-N严重抑制时,降低进水NH_4~+-N的质量浓度至20 mg/L运行16 d后,TN去除率可恢复至受抑前的96.3%。NO_2~--N对ANAMMOX的抑制效应比NH_4~+-N更强,所需的恢复时间更长。  相似文献   

8.
近年来随着我国合成革产业的飞速发展,合成革废水量也不断增多,利用传统生物脱氮工艺处理存在占地面积大、运行成本较高、总氮去除不彻底等问题,亟需探求经济高效的合成革废水脱氮新技术。本研究采用短程硝化(PNP)联合厌氧氨氧化/反硝化(Anammox/DN)处理实际合成革废水。实验结果表明,联合工艺处理效果较稳定,进水COD为160~580 mg/L,NH_4~+-N质量浓度为260~460 mg/L,出水NH_4~+-N质量浓度约15 mg/L、NO_2~--N质量浓度小于10 mg/L,NO_3~--N约30 mg/L,出水COD小于40 mg/L,总氮去除率稳定在85%左右,总氮容积去除速率约0.41~0.60 kg N/(m~3·d),达到预期处理效果。  相似文献   

9.
常温低基质厌氧氨氧化ASBR反应器的快速启动   总被引:3,自引:0,他引:3  
采用低基质模拟废水〔NH_4~+-N、NO_2~--N分别为(25±0.4)、(33±0.6)mg/L〕,在温度为(23±0.5)℃的条件下,研究了厌氧氨氧化ASBR反应器的快速启动。第Ⅰ阶段HRT为24 h,pH不控制,菌体自溶期出水NH_4~+-N为69 mg/L,活性停滞期出水NH_4~+-N与进水几乎相等;第Ⅱ~Ⅲ阶段,菌体处于活性提高期,HRT分别为12、8 h,pH控制为8.0~8.2,出水NH_4~+-N降低到1.6 mg/L,NO_2~--N均先升高后降低;第Ⅳ阶段HRT为4 h,pH控制为8.0~8.2,出水NH_4~+-N和NO_2~--N均低于1 mg/L,TN去除负荷为352.3 mg/(L·d),△m(NH_4~+-N)∶△m(NO_2~--N)∶△m(NO_3~--N)=1∶(1.33±0.02)∶(0.26±0.02),反应器启动成功。  相似文献   

10.
以活性炭粉末做载体采用分步浸渍的方法制备Pd、Cu质量分数分别为5%、1.25%的Pd-Cu/AC催化剂,并用于催化还原实际废水中硝酸盐的反应。考察了实际废水中共存离子和所含杂质对去除硝酸盐反应的影响。结果表明,自制备的催化剂能实现实际废水中硝酸盐的有效去除,反应结束时NO_3~--N的去除率为71.9%。实际废水中微生物、有机物等杂质的存在会降低催化剂的活性和选择性;Cl~-、SO_4~(2-)的存在几乎不会对硝酸盐的去除产生影响,而HCO_3~-的存在会造成硝酸盐去除率降低18.5%,副产物NH_4~+-N的质量浓度升高4.2 mg/L;常见阳离子对硝酸盐还原速率的影响按K~+Na~+Ca~(2+)Mg~(2+)Al~(3+)的顺序逐渐增大,生成副产物NH_4~+-N的含量按Al~(3+)M~(2+)Ca~(2+)Na~+K~+顺序逐渐升高。  相似文献   

11.
以自制复合铁碳填料为载体,建立物化-生物耦合脱氮体系,考察了HRT、DO含量、进水pH对低C/N(COD/ρ(TN)=1.5:1)污水脱氮的影响,并通定量了物化作用对脱氮的贡献率。结果表明,在耦合体系中,NH_4~+-N通过氨氧化菌和硝化菌的作用生成NO_3~--N和NO_2~--N,NO_3~--N和NO_2~--N进入生物膜内部,自养反硝化菌以载体原电池反应所产生的[Fe~(2+)]、[H]为电子供体实现反硝化脱氮,其适宜运行条件为:HRT为4.0 h,DO的质量浓度(2.0±0.1)mg/L,进水pH为7.0±0.1,此时污水COD、NH_4~+-N、NO_3~--N、TN去除率分别可达94.6%~97.3%、82.1%~83.6%、92.1%~94.7%、89.3%~92.5%。适宜的HRT低于其它同步硝化反硝化脱氮过程。反应器内反硝化所需电子37.9%由载体物化反应供给,消除了传统生物脱氮过程对有机碳源的依赖,源缩短了脱氮所需停留时间。故该耦合体系可实现低C/N污水的高效深度脱氮。  相似文献   

12.
《水处理技术》2021,47(10):38-42
采用厌氧折流板反应器(ABR)接种好氧活性污泥在常温((25±1)℃)下启动运行厌氧氨氧化工艺。结果表明,启动阶段,控制进水NH_4~+-N和NO_2~--N均为50 mg/L,仅运行57 d,NH_4~+-N、NO_2~--N和TN去除率就分别达到93.82%、99.84%和88.22%,表明成功实现常温启动。负荷提升阶段,73~87 d,进水NH_4~+-N和NO_2~--N的质量浓度以每次50 mg/L的增幅逐步从50 mg/L提升到200 mg/L,每次负荷提升,出水NH_4~+-N和NO_2~--N含量小幅波动再趋向于稳定,表明ABR有一定的耐负荷冲击能力。运行93 d,最大TN负荷率和TN去除速率分别为0.40 kg/(m~3·d)和0.33kg/(m~3·d),表现较好的脱氮性能。可为厌氧氨氧化工艺在实际工程中的应用提供理论依据。  相似文献   

13.
以实际垃圾渗滤液为研究对象,研究了短程硝化SBR+厌氧氨氧化ASBR组合工艺的脱氮特性。SBR采用逐步增加进水中渗滤液比例的方式进行培养,常温条件下,进水NH_4~+-N从91.5 mg/L提高到1 053 mg/L,出水NO_2~--N高达930 mg/L,NO_2~--N积累率达到了96.7%以上。ASBR进水由渗滤液、SBR出水和自来水按比例配制,从试验的第20天开始,ASBR进水中的NO_2~--N全部由SBR的出水提供,NH_4~+-N、NO_2~--N去除率均维持在98%以上,实现了系统对氮的深度处理。  相似文献   

14.
在上流式反应器中添加尼龙填料,并以小颗粒单质硫和NaHCO_3作为底物构建自养高效脱氮系统。在(35±1)℃下,经过70 d运行,在HRT为2.4 h、进水NO_3~--N浓度为150 mg/L时,达到1.3 kg/(m~3·d)的最大稳定脱氮能力。启动初期,应该缓慢提高进水NO_3~--N负荷来驯化反应器。S/N(摩尔)批次试验发现,在最佳摩尔比为10时,NO_3~--N的转化率为90%;而摩尔比低于10时,NO_3~--N转化速率随着单质硫粉浓度增大而增大,且摩尔比为1.1时,会出现NO_2~--N积累。由于传质效率低和单质硫流失问题,连续流反应器中S/N(摩尔)比宜在5.5以上,防止出现NO_2~--N积累。当进水NO_3~--N浓度为150 mg/L、HRT为2.4 h时,控制温度从(35±1)℃缓慢降至(20±0.5)℃,反应器脱氮能力稳定在1.4~1.5 kg/(m~3·d),说明本反应器对温度下降适应性较强,具备常温下高效运行的能力。  相似文献   

15.
采用序批式活性污泥法反应器(SBR)处理人工模拟高NH_4~+-N含量废水,研究半短程硝化的调控过程及微生物群落结构变化。结果表明,在NH_4~+-N的质量浓度140 mg/L、低DO含量(质量浓度约1.0 mg/L)和低游离氨(FA)含量(质量浓度约1.6 mg/L)条件下运行28 d后,开始出现NO_2~--N积累现象。提高进水NH_4~+-N的质量浓度至180mg/L后,NO_2~--N积累率上升至85%以上。经144 d的持续调控,出水ρ(NO_2~--N)/ρ(NH_4~+-N)保持在理论值1.32附近。在反应器运行过程中微生物群落多样性逐渐减少,而微生物群落丰富度仅在适应阶段迅速下降。主要功能菌氨氧化菌(AOB)相对丰度由接种时的0.12%上升至实现半短程硝化后的17.97%,其中,优势菌属为Nitrosomonas。而亚硝酸盐氧化菌(NOB)相对丰度最终保持在1.5%左右,说明调控方式可抑制NOB并促进AOB增殖。  相似文献   

16.
采用平板式、中心式2种构型的三维生物膜电极反应器(3D-BER)对模拟的污染地下水中的NO_3~--N进行处理,研究了水力停留时间(HRT)、电流、进水NO_3~--N浓度和pH这4种影响因素对2种反应器脱氮效果的影响。结果表明:平板式、中心式3D-BER反应器适宜的HRT均为12 h,最佳的电流范围均为40~50 mA,对应的最大NO_3~--N去除率分别为82.67%、71.89%,理想的进水NO_3~--N分别为35~55、20~35 mg/L,平板式3D-BER反应器对进水NO_3~--N负荷具有更高的承受能力,中心式3D-BER反应器由于具有较好的阴极和阳极产物混合条件,对进水pH具有更强的缓冲能力。  相似文献   

17.
首先采用厌氧氨氧化生物膜反应器建立稳定的厌氧氨氧化处理系统,控制温度为(32±2)℃,pH为(7.2±0.2)。通过控制进水基质比(NO_2~--N/NH_4~+-N)分别为1:1、1:1.1、1:1.2、1:1.32和1:1.4来研究基质比对厌氧氨氧化生物膜工艺脱氮效能的影响,在基质比1:1.20时,生物膜反应器的脱氮效果最好,进水NH_4~+-N为150 mg/L,HRT为12 h,其出水的平均NH_4~+-N和NO_2~--N在质量浓度分别为6 mg/L和3.5 mg/L,NH_4~+-N和NO_2~--N的平均去除率分别为96%、98%,此时的脱氮性能最好且稳定,其发生反应的NO_2~--N/NH_4~+-N最接近厌氧氨氧化反应式中的1.32。  相似文献   

18.
为实现城市污水处理厂二级出水的深度脱氮除磷,建立了硫铁耦合中试反应器,以污水厂生化出水为处理对象,通过改变进水NO_3~--N含量和水力停留时间(HRT),研究反应器脱氮除磷效果。结果表明,当进水体积流量为150~500 m~3/d(HRT=0.20~0.06 d),NO_3~--N、TP的质量浓度分别20、0.8 mg/L时,反应器出水的NH_4~+-N、NO_3~--N、TP的质量浓度可分别控制在1~5、1、0.3 mg/L,平均TN去除负荷(NRR)为0.08~0.11 kg/(m~3·d),最高可达0.19 kg/(m~3·d);当进水体积流量为150 m~3/d、进水NO_3~--N的质量浓度为30~45 mg/L时,反应器出水的NH_4~+-N、NO_3~--N的质量浓度均维持在1 mg/L以下,平均NRR约为0.17 kg/(m~3·d)。该硫铁耦合中试反应器具有良好、稳定的脱氮除磷能力,受进水负荷冲击影响较小,可为污水厂提标应用提供一定参考。  相似文献   

19.
针对垃圾渗滤液膜滤浓缩液中高含量的NO_3~--N、NO_2~--N及NH_4~+-N同时存在的水质特点,采用Zn-Cd初步还原-湿式氧化法(WAO)深度除氮法(2步法)去除其中的无机氮。以模拟浓缩液为研究对象,探讨了3种形态的无机氮在处理过程中的转化规律及其影响因素,并将该方法用于实际浓缩液的处理。结果表明,通过Zn-Cd双金属使废水中的NO_3~--N转化为NO_2~--N,通过WAO作用使体系中的NO_2~--N与NH_4~+-N转化为氮气的方式可将废水中的3种无机氮有效去除。在适宜的条件下,该方法可将体系中97.10%的NO_3~--N转化为NO_2~--N;体系中的NO_2~--N和NH_4~+-N在WAO阶段的去除率分别达到99.03%和69.23%。将该方法用于实际浓缩液的处理时,其无机氮的总去除率达到72.00%以上。  相似文献   

20.
在常温(20℃)且不补充营养液的条件下,在填充50%(体积比)蜂窝状填料的广口瓶中储存Anammox污泥30 d。储存后,细菌密度从3.635×10~(11)mL~(-1)减少到3.012×10~(11)mL~(-1),An AOB密度从2.338×10~(11)mL~(-1)减少到1.223×10~(11)mL~(-1),表明储存后的Anammox污泥仍有一定比例的Anammox菌。激活过程HRT保持为1 d,通过逐渐提高底物浓度来提高进水氮负荷。初始进水NH_4~+-N和NO_2~--N质量浓度为50 mg/L,经15 d激活,其去除率分别达到81.36%、99.34%,表明Anammox成功启动。经过55 d,进水NH_4~+-N和NO_2~--N达到200 mg/L,去除率分别为83.52%、99.99%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号