首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
解利昕  辛婧  解奥 《化工进展》2014,33(10):2700-2706
以三乙酸纤维素(CTA)为膜材料,1,4-二氧六环、丙酮为溶剂,甲醇、乳酸为添加剂,采用相转换法制备了三乙酸纤维素正渗透膜。研究了不同1,4-二氧六环/丙酮配比、添加剂乳酸含量、挥发时间、膜厚度、热处理温度条件下正渗透膜性能的变化规律。研究表明,当采用纯水为原料液,0.56mol/L CaCl2为汲取液时,优化制备的CTA正渗透膜的水通量达到14.10L/(m2?h),溶质反扩散量为0.031mol/(m2?h);采用0.1mol/L NaCl为原料液,4mol/L葡萄糖为汲取液时,优化制备的CTA正渗透膜的水通量保持在5L/(m2?h)以上,对NaCl的截留率大于99%。CTA正渗透膜相比于HTI膜,具有较高的亲水性、水通量、截留率,稳定性更好。  相似文献   

2.
本文以醋酸纤维素(CA)为膜材料,N,N-二甲基甲酰胺(DMF)和丙酮作为溶剂体系,聚乙二醇400(PEG400)作为添加剂,聚酯筛网作为支撑层,利用相转化方法制备醋酸纤维素正渗透膜。论文系统研究了CA的含量、DMF与丙酮的比例、添加剂的含量、支撑层的目数以及凝固浴温度对膜性能的影响,结果表明,当CA的质量分数为16%、DMF:丙酮的体积比为1:0.6、PEG400的质量分数为4%、作为支撑层的筛网目数为120mol/L、凝固浴的温度为60℃时,所制备正渗透膜的性能最佳;利用1mol/L NaCl作为驱动液,去离子水作为原料液,在1h的测试时间里,所制备膜的纯水通量可达到15 L/(m2·h)以上,反向盐通量控制在7.5g/(m2·h)以下。  相似文献   

3.
采用浸没相沉淀法制备聚砜(PSF)管式超滤膜。以纯水通量、卵清蛋白截留率、扫描电镜表征膜的结构和性能,考察了PSF含量、凝固浴温度和组成、添加剂种类和含量对PSF管式膜成膜性能及结构的影响。结果表明,凝固浴温度升高、聚乙烯吡咯烷酮(PVP)含量增加、PEG-400含量增加,都可以使膜的水通量增加、截留率降低;而凝固浴中添加溶剂二甲基乙酰胺(DMAc)、铸膜液中PSF含量的增加,都可以使膜的通量减小,截留率升高。  相似文献   

4.
以醋酸纤维素(CA)及聚丙烯腈(PAN)为膜材料,以纳米三氧化二铝(Al2O3)为添加剂,通过浸入-沉淀相转化法制备了有机-无机超滤膜,从凝固浴温度及组成两个方面考察成膜规律.试验结果表明,凝固浴温度及组成对膜性能有较大影响,综合膜水通量及截留率多方面进行考虑,凝固浴温度50℃较为适宜;凝固浴中加入表面活性剂,膜的水通量及截留率均得到改善.  相似文献   

5.
以聚砜(PSU)为成膜聚合物,聚乙烯吡咯烷酮(PVP)为成孔添加剂,二甲基乙酰胺为溶剂,采用干–湿法纺丝工艺和浸没沉淀相转化法制备了PSU中空纤维膜,研究了添加剂含量、凝固浴温度、干纺程对中空纤维膜结构与性能的影响。结果表明,随着添加剂PVP含量的增大,在PSU中空纤维膜表皮层形成贯通膜孔,皮层变薄,孔径变大,指状孔发达,水通量提高,截留率下降;凝固浴温度升高对膜水通量起到一定的抑制作用,凝固浴温度为30℃时,制得的膜具有较高的水通量和卵清蛋白截留率,以及较高的孔隙率;干纺程的大小对膜性能有重要影响,当干纺程为11 cm时,膜纯水通量为200 L/(m~2·h),截留率为90%,综合性能较好。  相似文献   

6.
以廉价大孔α-Al_2O_3管为载体,通过两步变温热浸渍涂晶法,修饰载体表面缺陷,得到连续而均匀的晶种层。在微波辅助作用下,短时间内有效诱导制备出超薄Na A分子筛膜。将其用于渗透汽化脱盐体系中,研究发现,微波加热法制备的超薄Na A沸石膜水通量明显高于常规加热法制备的较厚Na A沸石膜,水的渗透通量随着盐浓度的增大在小范围内有所降低,而操作温度的升高对水的渗透具有明显促进作用,当原料液浓度为0.6mol/L、操作温度85℃时,水通量达到11.03kg/(m2·h)。同时,离子截留率不受操作温度及原料液浓度的影响,始终保持99.9%。此外,Na A沸石膜在渗透蒸发脱盐中表现出较高的稳定性,75℃条件下,在0.6mol/L的Na Cl溶液中性能可稳定72h以上。该方法在降低制膜成本的同时有效提高了水的渗透通量及离子截留率,表明Na A沸石膜在膜法脱盐的工业化应用领域具有较好的应用前景。  相似文献   

7.
针对正渗透膜本身存在较低水通量以及较高反向盐通量的问题,以筛网为支撑的聚砜膜作为底膜,间苯二胺(MPD)和均苯三甲酰氯(TMC)作为水相和有机相单体,不同含量的甲酸乙酯添加在有机相中作为共溶剂,通过界面聚合法制备了高通量的聚酰胺正渗透复合膜。以2 mol/L Na Cl和1 mol/L的MgCl_2作为汲取液,去离子水作为原料液,对所得正渗透膜进行水通量以及反向盐通量的测试。结果表明,在有机相中添加少量甲酸乙酯作为共溶剂时,可以提高膜的通量和效率。通过改变甲酸乙酯的添加量,可以改变膜性能以及形貌。当甲酸乙酯的添加质量分数为4%时,正渗透的水通量能达到未改性膜的2.6倍,同时J_--s/J_v仍维持在较低的水平。  相似文献   

8.
聚偏氟乙烯管式微孔膜的工艺研究   总被引:2,自引:0,他引:2  
对聚偏氟乙烯(PVDF)管式微孔膜生产工艺进行了研究。系统地讨论了相转化法制备管式微孔膜过程中各个因素的影响。研究发现,铸膜液温度对PVDF管式膜截留率和纯水通量影响不明显;铸膜液中加入NH4Cl后,膜的纯水通量增加,截留率减小,孔径增大;不同凝固浴制得的PVDF管式微孔膜不同,膜的纯水通量和截留率也不同。  相似文献   

9.
将聚氧化乙烯(PEO)添加到聚偏氟乙烯/苯乙烯马来酸酐树脂(PVDF/SMA)膜体系中,通过非溶剂致相分离法(NIPS)制备了添加不同PEO含量的PVDF/SMA共混膜。其中PEO质量分数为2%的共混超滤膜性能最好,水通量为531.1L/(m2·h),牛血清蛋白(BSA)截留率为65.8%,水接触角为63.6°,膜剥离强度为0.2756kN/m。接着以PVDF/SMA膜为主要研究对象测试了凝固浴温度对共混超滤膜的纯水通量以及BSA截留率的影响,该实验的结果表明凝固浴温度的改变对膜性能没有产生明显的影响。因此,选择在常温凝固浴温度下测试不同凝固浴成分对共混膜性能的影响。探究了膜在凝固浴成分分别为N,N-二甲基乙酰胺(DMAc)(质量分数为3%、6%、9%)、氯化钠(NaCl)(0.05mol/L、0.1mol/L、0.2mol/L)和乙醇(质量分数为3%、6%、9%)时的膜性能变化,以及对各个组分得到的膜样本进行扫描电子显微镜(SEM)表征。结果表明,随着DMAc含量增加,膜表面的孔在减少,且膜皮层的厚度增加,使得膜的水通量减少而BSA截留率提高。而随着NaCl浓度...  相似文献   

10.
对聚偏氟乙烯(PVDF)管式微孔膜生产工艺进行了研究。系统地讨论了相转化法制备管式微孔膜过程中各个因素的影响。研究发现,铸膜液温度对PVDF管式膜截留率和纯水通量影响不明显;铸膜液中加入NH4Cl后,膜的纯水通量增加,截留率减小,孔径增大;不同凝固浴制得的PVDF管式傲孔膜不同,膜的纯水通量和截留中也不同。  相似文献   

11.
通过溶解度参数预测,膜渗透性能检测,及扫描电镜(SEM)对膜形貌观察,考察了聚偏氟乙烯(PVDF)在γ-丁内酯(γ-BL)、磷酸三乙酯(TEP)为混合溶剂,乙二醇(EG)、N,N-二甲基乙酰胺(DMAc)及其混合物为凝固浴时,相转化条件及溶剂配比对PVDF膜在孔隙率、纯水通量、BSA截留率,以及拉伸强度等性能方面的影响行为。结果表明,随混合溶剂中TEP质量分数的增加,凝胶浴中溶剂DMAc质量分数增大,PVDF膜皮层逐渐变薄,PVDF结晶球粒粒径变小,孔隙率增加,拉伸强度下降。当混合溶剂中TEP的质量分数为60%,凝胶浴DMAc含量30%时,膜纯水通量达2 100 L/(m2·h),BSA截留率仍保持58.7%,具有良好的超滤性能,可作为制备高通量、较高截留PVDF超滤膜的最佳条件。  相似文献   

12.
采用反渗透海水淡化后的浓盐水为原料液,考察了驱动液种类、切向流速(泵转速)、原料液浓度、活性层朝向等变量对正渗透过程水通量的影响。结果表明,在相同浓度下的驱动溶液,氯化钙作为驱动溶液产生的水通量最高;氯化纳次之;葡萄糖最小,但膜对氯化钠的截留率最高,随着驱动液浓度的增大,对应的水通量增大,但水通量的增加量随驱动液浓度的增大而减小;当膜的活性层朝向原料液(正渗透模式)时,初始水通量远小于膜的活性层朝向驱动液(压力阻尼渗透模式)的水通量,但在驱动液浓度相同时正渗透模式下的平均水通量更高。在切向流速达到1 L/min后,水通量受切向流速的影响较小。最后采用HTI膜在正渗透模式下以5 mol/L NaCl溶液为驱动液、切向流速为1 L/min的条件下连续运行进行浓缩,约30 h后,在原料液的容器壁上发现了少许的沉淀物,原溶液的Na Cl回收率可达到52.6%。  相似文献   

13.
采用干-湿法工艺制备聚砜基膜,研究了聚砜铸膜液中聚砜含量、添加剂种类、溶剂组成及含量和凝固浴温度对膜性能的影响。研究结果表明,铸膜液中聚砜含量和添加剂含量对膜性能影响较大;使用混合溶剂可有效改善膜的孔结构和提高聚砜基膜的性能;控制凝胶浴温度可以得到较高性能的基膜。通过选择最佳铸膜液组成及工艺条件,可以制备较高性能的基膜。  相似文献   

14.
利用非溶剂相转化法(NIPS),以聚偏氟乙烯(PVDF)/聚乙烯吡咯烷酮(PVP)/N,N-二甲基乙酰胺( DMAC)为铸膜液体系,水为凝固浴制备了大通量超滤膜.考察了铸膜液温度、凝胶浴温度、空气预蒸发时间等条件对超滤膜性能与结构的影响.研究结果显示,随着铸膜液和凝胶浴温度的提高,膜纯水通量增大,强度增强,截留率降低,膜的第一泡点压力减小,膜的孔隙率随铸膜液温度升高而增大,随凝胶浴温度升高先增大后减小,膜断面指状孔发育较为通透,海绵层致密.延长铸膜液在空气预蒸发时间,膜的第一泡点压力和孔隙率降低,超滤膜截留率提高,通量和强度变化不大.  相似文献   

15.
以聚偏氟乙烯(PVDF)、聚乙烯吡咯烷酮(PVP)、二甲基乙酰胺(DMAc)为铸膜液体系,采用高含量溶剂DMAc水溶液作为第1凝固浴,水为第2凝固浴组成的双凝固浴制备PVDF中空纤维膜.通过扫描电镜(SEM)形貌观察,纯水水通量和BSA截留率测试,探讨了第1凝固浴停留时间对PVDF-PVP中空纤维膜性能与结构的影响.结果表明,随着膜丝在高溶剂含量第1凝固浴中停留时间从0变化至10s,膜丝纯水通量在2s时下降,之后持续增加,而BSA截留率不断降低.SEM显示随停留时间延长,膜表面孔隙率增加,亚层指状孔增多,大孔孔径增大,亚层海绵结构变得疏松.在停留时间为10s时,膜水通量达315 L·m-2.h-1,BSA截留率86%,可做为制备高通量PVDF超滤膜的最佳成形条件.  相似文献   

16.
采用溶液相转化法制备高孔隙率、大通量聚偏氟乙烯(PVDF)膜作为复合正渗透膜基膜,研究通过改变基膜制备过程中的凝固浴温度,以及在铸膜液中加入高亲水性的氧化石墨烯(GO)来优化基膜及其复合膜的结构与性能。结果表明,凝固浴温度为40℃、GO的质量分数为0.06%时,所得复合膜的正渗透性能较好,分离层朝向原料液和分离层朝向汲取液模式下的纯水通量分别为14.7、21.84 L/(m~2·h)。扫描电镜观察发现,基膜断面由较薄皮层和半开放膜内大孔组成,GO的加入使膜内大孔体积增大,而对复合膜表面的峰谷结构影响较小。  相似文献   

17.
以含二氮杂萘酮结构聚芳醚腈酮(PPENK)为膜材料,N-甲基-2-吡咯烷酮(NMP)为溶剂,采用干-湿相转化法制备了中空纤维超滤膜.考察了聚合物浓度、添加剂含量以及纺丝过程中空气间隙、凝胶浴温度和纤维壁厚对膜结构及性能的影响.结果表明,当聚合物浓度为13%,添加剂EgOH含量α=0.9时,膜通量可达770 L·m-2·h-1,对BSA的截留率在90%以上;增大空气间隙可使膜的截留性能提高,但膜通量有所下降,最佳空气间隙为5~8cm;凝胶浴温度的升高增大了膜的通量,截留率下降幅度不大,凝胶浴温度宜控制在21~25℃范围内;纤维壁厚在0.15~0.18 mm时膜性能最佳.  相似文献   

18.
研究聚砜纳滤平板膜的制备,通过浸没相转化过程制备膜,讨论和研究聚砜(PSF)含量,聚乙烯吡咯烷酮含量,凝固浴温度和空气浴时间对膜结构、硫酸镁溶液水通量和截留率的影响,结果表明;聚砜(PSF)含量增加,凝固浴温度升高、空气浴时间增长时,都可以使膜水通量降低,截留增大,而聚乙烯吡咯烷酮(PVP)含量增加时水通量增加,截留率降低。  相似文献   

19.
通过非溶剂致相分离(NIPS)法制备了苯乙烯-马来酸酐共聚物(SMA)/氯化聚氯乙烯(CPVC)共混超滤膜,探讨了凝固浴中不同溶剂(DMAc)含量对其超滤膜表面酸酐基团偏析程度、微观结构、亲水性、水通量、截留率和抗污染的影响。结果表明:凝固浴中溶剂含量的增加抑制了酸酐基团向膜表面的偏析,导致亲水性减弱;同时,铸膜液中溶剂与水分子之间扩散速率的变小引起延迟分相,使得膜表面孔径变小和分布变窄。当溶剂质量分数为3%时,超滤膜对牛血清白蛋白(BSA)截留率提升至98.10%、通量恢复率为96.82%,且不可逆污染率降为3.77%,表明凝固浴中适量的溶剂可进一步提高超滤膜抗污染性能。  相似文献   

20.
以某污水厂二级出水为原料液,采用型号TFC-ES正渗透膜研究过滤过程中的工艺特性(膜朝向、汲取液的种类及含量、错流速度)及适宜的膜清洗条件,以优化操作条件、降低浓差极化、减轻膜污染、提高正渗透膜性能。结果表明,以FO模式(活性层朝向原料液侧,AL-FS)、7.25 cm/s的错流速度、1 mol/L的Mg Cl2溶液作为汲取液时,复合正渗透膜的纯水通量大于9 L/(m2·h),反向盐截留率保持在99.90%以上。二级出水产生的可逆膜污染可采用简单的水力清洗方法,以17.4 cm/s的错流速度,去离子水清洗30 min后,膜通量恢复率大于90%。同时复合正渗透膜对二级出水中的溶解性固体(TDS)截留率高达98%以上,对金属离子Al~(3+)和Fe~(3+)的截留率可分别达到97%和100%,有机物、TN和TP的截留率均在82%以上,可为正渗透技术应用于废水处理提供相应参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号