首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对改良Hummers法制备的氧化石墨烯(GO)进行磁性负载得到一种磁性氧化石墨烯(MGO),并通过β-环糊精改性制备了一种功能化磁性氧化石墨烯(MGO/CD),研究了MGO/CD对水体中Cd~(2+)的吸附性能。通过形貌表征可以看出,GO被成功磁性负载,并接枝上了β-环糊精;磁强振动仪测试表明,MGO/CD的饱和磁化强度达到67. 55 emu/g,吸附材料的磁性能良好。吸附实验表明,在温度为303 K,吸附量随着pH的升高而增大,最高可达到193. 8 mg/g,吸附过程符合Langmuir等温吸附模型与准二级动力学模型。外加磁场分离并重复利用5次,MGO/CD的吸附率依然稳定在93%以上,是一种对Cd~(2+)吸附性能优良的吸附剂。  相似文献   

2.
以二乙烯三胺(DETA)、氧化石墨烯(GO)及共沉淀法制备的四氧化三铁(Fe_3O_4)为原料,通过原位聚合法制得二乙烯三胺改性磁性氧化石墨烯复合材料(DETA-mGO)。通过透射电镜(TEM)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)等对DETA-mGO进行了表征,并研究了它吸附水中Cd(Ⅱ)离子的行为。结果表明:DETA-mGO的饱和磁化强度为28.5 emu/g;DETA改性大幅提高了DETA-mGO对Cd(Ⅱ)的吸附量,其吸附量高达114.5 mg/g。DETA-mGO吸附动力学基本符合准二阶模型,吸附速率主要由化学吸附阶段控制。其吸附等温线与Langmuir吸附等温线更吻合,吸附过程主要是单分子层的化学吸附。  相似文献   

3.
吴新华  肖洁  刘久逢  刘军 《山东化工》2023,(12):52-54+58
采用一种简便新方法制备了氧化石墨烯/二氧化硅(GO/SiO2)复合纳米吸附剂,用傅里叶红外光谱(IR)和X射线衍射(XRD)进行了表征。研究了GO/SiO2复合纳米材料对铬离子(VI)吸附性能,采用动力学分析,等温线模型评价了其吸附过程。结果表明:在pH值=4时,GO/SiO2复合纳米材料对Cr(VI)最大吸附量为181.81 mg/g,其吸附过程符合准二级动力学和Langmuir等温模型。  相似文献   

4.
利用过氧化法制备出氧化石墨烯,在氮气的保护下合成磁性氧化石墨烯(MGO)。考察了溶液pH、铀的初始浓度、吸附时间和吸附温度对铀吸附影响。用电镜扫描和XRD对MGO进行了形貌结构表征,确定了Fe_3O_4成功的负载在氧化石墨烯上。结果表明,吸附等温线符合Langmuir模型,吸附动力学符合准二级动力学,热力学表明吸附为自发吸热过程。最大吸附为224.93 mg/g。  相似文献   

5.
为了提高氧化石墨烯(GO)的比表面积和吸附性能,采用氢氧化钾对GO进行高温固相活化,制备出活化氧化石墨烯(GOKOH),并将其用于对水中阴离子染料甲基橙(MO)的吸附研究。结果表明,GOKOH的比表面积可达672.48 m2/g。GOKOH能在较宽的p H范围内实现对MO的高效去除,去除率高达94.87%,吸附平衡时间约为150 min。准一级和准二级动力学拟合的理论平衡吸附容量分别为549.87 mg/g和549.45 mg/g,Langmuir模型的饱和吸附容量为632.91 mg/g。该吸附过程受边界层扩散与颗粒内扩散两个步骤控制,符合二级动力学模型和Langmuir模型,并主要以化学吸附为主。  相似文献   

6.
将聚乙烯亚胺(PEI)接枝到氧化石墨烯(GO)表面,得到聚乙烯亚胺修饰的氧化石墨烯(GO-PEI)材料。通过FTIR、XRD、TGA对GO-PEI的结构及PEI接枝量进行表征,并研究其对水中Cr(Ⅵ)的吸附性能。结果表明,PEI成功接枝到GO表面,其氨基含量为13.72 mmol/g。GO-PEI对Cr(Ⅵ)表现出优良的吸附性能,其吸附过程符合Langmuir等温吸附模型和准二级动力学模型。GO-PEI对Cr(Ⅵ)的去除是吸附与化学还原共同作用的结果。  相似文献   

7.
本文采用氧化石墨烯为原料,以Fe_3O_4为磁化剂,通过改变Fe_3O_4的量制备出不同磁性的氧化石墨烯(MGO)。用电镜扫描和XRD对MGO进行结构表征,确定了Fe_3O_4成功的负载在氧化石墨烯上。系统考察了溶液pH、铀的初始浓度和吸附时间对铀吸附影响,继而得到最佳吸附条件。实验数据采用Langmuir模型和Freundlich模式进行拟合,结果表明,吸附等温线更加符合Langmuir模型;与拟一级动力学模型相比,拟二级动力学模型能更好地拟合本吸附过程。  相似文献   

8.
采用化学共沉淀法合成了纳米材料CuFeO_2,运用扫描电镜/能谱仪(SEM/EDS)、X射线粉末衍射仪(XRD)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FTIR)、激光粒度分析仪和比表面积测定仪(BET)对其结构进行了表征和测定,结果表明:合成的CuFeO_2平均粒径为20.0 nm,比表面积为258.3 m2/g。CuFeO_2对亚甲基蓝(MB)的吸附是一个准二级动力学过程,在30 min内达到吸附平衡,较好地符合Langmuir吸附模型,同时CuFeO_2具有优异的吸附性能,室温下pH=7时饱和吸附量达123.0 mg/g,CuFeO_2可作为一种有效除去水体中亚甲基蓝污染物的高容量吸附材料。  相似文献   

9.
以氧化石墨烯(GO)和纳米Fe_3O_4为原料,制备磁性石墨烯气凝胶(Fe_3O_4/RGO),通过场发射扫描电镜、X射线衍射仪、傅里叶红外光谱仪对Fe_3O_4/RGO进行表征,研究了Fe_3O_4/RGO对Pb(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)的吸附特性,并使用等温吸附模型、吸附动力学模型、吸附热力学模型对吸附机理进行分析。结果表明,纳米Fe_3O_4成功负载在GO气凝胶表面,并能在外加磁场作用下实现快速磁分离。Fe_3O_4/RGO对重金属离子的吸附符合Langmuir等温吸附模型和准2级吸附动力学模型,且反应为是吸热过程,能自发进行。Fe_3O_4/RGO在25℃、p H为6时的吸附容量分别为58.48、314.5、56.12 mg/g,Fe_3O_4/RGO对重金属吸附排序为Cu(Ⅱ)Pb(Ⅱ)Cd(Ⅱ)。  相似文献   

10.
以氧化石墨烯(GO)、FeCl_3·6H_2O及聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(PSSMA)为主要原料,通过简便一步溶剂热法制备了阴离子聚电解质修饰磁性氧化石墨烯(MGO@PSSMA),并将其用于水溶液中重金属Pb~(2+)、Cu~(2+)的吸附去除。采用FTIR、SEM、TEM、VSM和DLS对制备的MGO@PSSMA进行了表征。考察了溶液pH、吸附时间、溶液初始质量浓度对Pb~(2+)、Cu~(2+)在MGO@PSSMA及未经PSSMA修饰磁性氧化石墨烯(MGO)上吸附的影响。探讨了吸附等温过程、吸附动力学及吸附作用机理。结果表明:MGO表面引入PSSMA可有效增加其对Pb~(2+)、Cu~(2+)的吸附量。在pH=5,溶液初始质量浓度为300 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的实际吸附量达141.1和104.8 mg/g。当溶液初始质量浓度为150 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的吸附平衡时间分别为2和1.5 min。MGO@PSSMA对Pb~(2+)、Cu~(2+)的吸附动力学及吸附等温数据分别符合准二级吸附动力学模型和Langmuir吸附等温模型。使用乙二胺四乙酸(EDTA)和HCl可实现MGO@PSSMA的有效再生;通过外加磁场作用可实现MGO@PSSMA的回收再利用。  相似文献   

11.
为提高电容去离子技术(CDI)对水中镉离子(Cd~(2+))的去除效率,以氧化石墨烯(GO)为主吸附材料、改性碳纳米管(CNT~*)为次吸附材料兼导电剂制备了复合电极,通过测试比表面积、循环伏安特性曲线可知,当m(氧化石墨烯)∶m(碳纳米管)∶m(聚偏氟乙烯)=7.2∶0.8∶2时,电极的比表面积为391.72 m2/g,比吸附量达到11.25 mg/g,比电容达到142.36 F/g。工作电压为1.2 V、循环流速为20 m L/min、电极板间距为3 mm、电极对数达到4对时,镉的去除率可以达到91.8%。通过动力学分析,准一级动力学模型能较好地描述电极对离子的吸附速率。通过对吸附等温线拟合分析,Langmuir模型的拟合率为98.9%,Freundlich模型的拟合率为99.87%,证明GO/CNT~*电极在CDI去除镉离子中具有较好的效果。  相似文献   

12.
为了提高氧化石墨烯(GO)的吸附能力和分离效果,采用恒温搅拌法和水热法制备磁性三乙烯四胺氧化石墨烯(M-T-GO)复合吸附剂。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和透射电镜(TEM)测试方法对其进行表征,并对M-T-GO对Cu2+的pH、吸附动力学、吸附等温线和吸附热力学进行研究。结果表明,M-T-GO对Cu2+的吸附符合二级反应动力学和Langmuir吸附等温式描述,吸附反应为自发吸热过程,饱和吸附量为245.09 mg·g-1,同时具有快速分离和易再生的优点。采用X射线光电子能谱(XPS)推测M-T-GO对Cu2+的吸附机理,结果表明M-T-GO主要通过螯合作用和静电引力对Cu2+进行吸附。  相似文献   

13.
以氧化石墨烯和金刚烷为原料,通过水相合成法制备了金刚烷胺功能化氧化石墨烯复合材料A/GO,以FT-IR、XRD和XPS对A/GO进行了结构表征,并考察了A/GO对有机染料的吸附性能。结果表明,与氧化石墨烯相比,A/GO对甲基蓝(AB93)表现出高效吸附性,其吸附动力学和吸附等温模型分别符合拟二级动力学和Langmuir模型,理论最大吸附容量(qm)为1250.0 mg/g。热力学分析表明,A/GO吸附AB93是自发的放热过程。A/GO吸附AB93对盐(NaCl和KCl)表现出良好的耐盐性,而CaCl2能有效地促进A/GO吸附AB93。对于刚果红和AB93等的混合染料体系,A/GO能选择性吸附AB93。  相似文献   

14.
通过在氧化石墨烯分散溶液中水解钛酸丁酯成功制备氧化石墨烯-TiO2复合材料(GO-TiO2),采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、全自动比表面及孔径分析仪(BET)和紫外-可见漫反射光谱(UV-vis DRS)等对样品进行了表征。研究了GO10-TiO2对亚甲基蓝(MB)、甲基橙(MO)和罗丹明B(RhB)3种染料的吸附动力学和光催化性能。结果表明:TiO2颗粒均匀地附着在GO片层表面;GO10-TiO2对3种染料的吸附过程为多层吸附,吸附动力学符合拟二级动力学模型;在25℃条件下GO10-TiO2对废水中MB、MO和Rh B的吸附因共轭结构、极性等的差异而呈现选择性吸附,吸附容量分别为9.2mg/g、5.4mg/g和23.0mg/g。对3种染料废水的光催化降解效果与吸附性能相关联,吸附容量越大降解效率越高,光催化反应60min时,MB、MO和Rh B降解率分别为89%、75%和98%。  相似文献   

15.
利用亲核取代反应制备L-色氨酸功能化氧化石墨烯(GO/L-Trp)并考察了其对Ni2+的吸附效果。通过全反射傅里叶红外光谱(ATR-FTIR)和X射线衍射(XRD)等分析方法对GO/L-Trp的结构进行了表征。考察了吸附时间和重金属离子浓度对吸附效果的影响并对吸附动力学和等温线进行了探究。结果表明,L-Trp成功通过亲核取代反应连接到GO平面上。当吸附剂含量为10 mg,p H为8且吸附时间为480 min时,GO/L-Trp对Ni2+的吸附百分率为88%。该吸附反应符合二级动力学模型且为单层吸附,其最大吸附容量为91.4 mg/g。  相似文献   

16.
为了提高氧化石墨烯(GO)的吸附能力和分离效果,采用恒温搅拌法和水热法制备磁性三乙烯四胺氧化石墨烯(M-T-GO)复合吸附剂。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和透射电镜(TEM)测试方法对其进行表征,并对M-T-GO对Cu~(2+)的p H、吸附动力学、吸附等温线和吸附热力学进行研究。结果表明,M-T-GO对Cu~(2+)的吸附符合二级反应动力学和Langmuir吸附等温式描述,吸附反应为自发吸热过程,饱和吸附量为245.09 mg·g-1,同时具有快速分离和易再生的优点。采用X射线光电子能谱(XPS)推测M-T-GO对Cu~(2+)的吸附机理,结果表明M-T-GO主要通过螯合作用和静电引力对Cu~(2+)进行吸附。  相似文献   

17.
《应用化工》2022,(11):2812-2815
采用一步共沉淀法,以FeCl_2·4H_2O、FeCl_3·6H_2O和氧化石墨烯为原料,在碱性条件下制备氧化石墨烯/四氧化三铁的磁性复合材料(MGO),考察pH、时间和吸附温度等对MGO吸附Cu(2+)的影响。结果表明,MGO对Cu(2+)的影响。结果表明,MGO对Cu(2+)的最佳吸附条件:20 mL浓度为200 mg/L、pH=5.5的Cu(2+)的最佳吸附条件:20 mL浓度为200 mg/L、pH=5.5的Cu(2+)溶液,加入MGO 20 mg,吸附温度30℃,吸附时间150min,最大吸附容量为61.4 mg/g,Cu(2+)溶液,加入MGO 20 mg,吸附温度30℃,吸附时间150min,最大吸附容量为61.4 mg/g,Cu(2+)的去除率为98.1%。MGO吸附Cu(2+)的去除率为98.1%。MGO吸附Cu(2+)符合准二级动力学模型。  相似文献   

18.
利用亲核取代反应制备L-色氨酸功能化氧化石墨烯(GO/L-Trp)并考察了其对Ni2+的吸附效果。通过全反射傅里叶红外光谱(ATR-FTIR)和X射线衍射(XRD)等分析方法对GO/L-Trp的结构进行了表征。考察了吸附时间和重金属离子浓度对吸附效果的影响并对吸附动力学和等温线进行了探究。结果表明,L-Trp成功通过亲核取代反应连接到GO平面上。当吸附剂含量为10 mg,p H为8且吸附时间为480 min时,GO/L-Trp对Ni2+的吸附百分率为88%。该吸附反应符合二级动力学模型且为单层吸附,其最大吸附容量为91.4 mg/g。  相似文献   

19.
黄正根  罗秋艳  胡德玉  范文哲  王光辉 《精细化工》2019,36(6):1036-1040,1061
利用Hummers法制备氧化石墨烯(GO),并结合原位沉淀法合成了一种复合吸附材料β-环糊精修饰磁性氧化石墨烯(Fe_3O_4@GO/β-CD),用SEM、TEM、FTIR、激光粒度分析仪、比表面积测定仪(BET)和磁强计对Fe_3O_4@GO/β-CD进行了表征和测定,结果表明:合成的Fe_3O_4@GO/β-CD平均粒径为460nm,比表面积为252.3m~2/g,饱和磁化强度为73.5emu/g。Fe_3O_4@GO/β-CD对酸性红R的吸附是一个准二级动力学过程,其准二级反应速率常数为5.18*10–3 g/(mg·min),吸附等温线较好地符合Langmuir模型,在pH=3.0时对酸性红R的最大吸附量为228.31 mg/g。  相似文献   

20.
《应用化工》2022,(3):697-701
采用海藻酸钠(SA)溶液与磁性氧化石墨烯(MGO)共混制备复合微球(MGO/SA),研究其对水中Cr(Ⅵ)的吸附处理效果。实验表明,以海藻酸钠为包埋载体,通过添加适量致孔剂处理经磁化的氧化石墨烯,可获得一定尺寸的MGO/SA复合微球,最优制备工艺为:MGO投加量0.45 g,固化温度25℃,NaCl含量2.4 g。FTIR、SEM、VSM等表明,MGO/SA表面粗糙,呈无规则网状结构,内部含氧基团增多,吸附活性增强,且微球具有典型的S型磁滞回线,能快速从水溶液中分离。在MGO投加量为0.3 g、pH值为1条件下,处理10 mg/L的含Cr(Ⅵ)污水270 min, Cr(Ⅵ)的去除率为97.28%;复合微球对Cr(Ⅵ)的吸附过程符合准二级动力学方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号