首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了更高效的处理印染废水中的污染物,采用水解酸化+生物接触氧化法对混合染料废水进行处理,研究各工艺阶段对废水处理的影响,且因印染废水中化学需氧量(COD)较高,重点考察COD的去除效果。结果表明,水解酸化阶段对COD的去除率为29.17%;进一步通过2级生物接触氧化后,COD去除率提高至90.92%;当流量为5 L/h,pH为7时,可实现COD的较高去除率即92.58%,且在一定程度上节约处理成本。该方法可实现对混合染料废水中COD、五日生化需氧量(BOD5)、色度以及氨氮的有效去除。  相似文献   

2.
H-O-BAF生物组合工艺处理皮革废水   总被引:6,自引:0,他引:6  
采用水解酸化-生物接触氧化-上向流生物曝气滤池(H-O-BAF)组合工艺对皮革废水进行生物处理实验.分析了皮革废水水质和可生化性.研究了溶解氧质量浓度(DO)和水力停留时间(HRT)对该工艺处理效果的影响.该工艺处理皮革废水合适的HRT为:水解酸化10 h,生物接触氧化6 h,生物曝气滤池3 h左右.在合适的操作条件下该工艺对皮革废水COD、色度和总铬的去除率分别达到72.8%、80.0%和66.6%,处理出水水质达到排放标准.  相似文献   

3.
水解酸化-好氧MBBR耦合Fenton法处理抗生素废水研究   总被引:4,自引:0,他引:4  
采用水解酸化—好氧移动床生物膜(MBBR)串联Fenton工艺处理抗生素废水,探讨了pH、HRT等对水解酸化以及Fe2 浓度和H2O2投加量对Fenton工艺的影响。实验结果表明,对于COD为6800.62mg/L、B/C<0.3的抗生素废水,当水解段pH和HRT分别为6.5和12h时,挥发酸(VFA)质量浓度为931.75mg/L,COD去除率为26.59%,此时水解酸化—好氧段出水COD为1229.80mg/L,COD总去除率为81.92%。再经Fenton工艺深度处理,当Fe2 最佳投加质量浓度为240mg/L,H2O2投加量为3.19mL/L时,总COD去除率可达97.38%,最终出水COD为178.50mg/L,达到制药工业废水排放标准。  相似文献   

4.
采用臭氧-水解酸化-内循环BAF组合工艺深度处理燃料乙醇企业二级生化出水,考察了臭氧氧化时间、臭氧投加速率、生化处理单元HRT对废水COD、NH3-N、色度去除率的影响。结果表明:当进水COD为230~270mg/L,NH3-N为9.7~10.9 mg/L,色度为80~124倍时,在臭氧氧化时间为30 min,臭氧投加速率为1.40 g/h,水解酸化池和内循环BAF反应器HRT均为4 h的条件下,出水COD、NH3-N分别为45.9、3.13 mg/L,色度4倍,达到了《污水综合排放标准》(GB 8978—1996)一级排放标准的要求。  相似文献   

5.
为了解水解酸化-生物接触氧化工艺在处理中草药加工废水的处理效果,将参数调试为在水解酸化池水力停留时间13.5h,溶解氧浓度0.1~0.2mg/L,生物接触氧化池水力停留时间21.6h,溶解氧浓度2~3mg/L,进行反应器的启动试验。最终经过20d完成了该工艺反应器的启动,测定了反应器的COD、总氮、总磷和色度情况。结果表明,在经过反应器处理后,COD的去除率为60%以上,总氮去除率为50%以上,总磷去除率为60%以上,色度去除率为60%以上,反应器对废水各项指标的去除率非常稳定。  相似文献   

6.
唐清畅  蒋剑虹  唐玉霜  邱迅 《广东化工》2023,(6):122-124+115
通过在实验室构建小试实验装置,以实际废水为处理对象,验证了水解酸化+A2/O+化学混凝工艺作为某光电产业园区污水处理厂主体工艺的可行性,并提出了污水处理工艺中的关键参数的建议值,研究表明:采用完全混合型水解酸化工艺,可去除废水中部分COD且提高出水的BOD5/COD值,提高废水的可生化性,当HRT达8 h时,出水的可生化性最高,达到0.29,再进一步延长水解时间出水COD虽然可进一步降低,但BOD5/COD变小,为了使后续工艺能有更多可生物利用的碳源,建议工程设计中水解酸化工艺的HRT采用8 h;水解酸化的出水再经A2/O处理,在外加碳源的条件下,A2/O总HRT不低于18 h、好氧区HRT不低于12 h,出水中的COD、BOD5、氨氮、TN均可降低到排放标准以下;单纯的生物处理工艺不能使TP达标,采用PAC作为化学除磷药剂,当铝:磷摩尔比为2时,出水TP=0.22 mg/L,可达排放标准,建议工程设计中铝:磷摩尔比采用2~2.5。采用水解酸化+A  相似文献   

7.
采用水解酸化工艺对含二甲基亚砜的化纤废水进行预处理,探索工艺的可行性及相关工艺参数的确定。结果表明,该类废水直接进入水解酸化器进行处理效果较差,需要先进行高级氧化预处理再进入水解酸化工艺。经过稳定运行,在水解酸化水力停留时间为18h、温度为30℃、进水pH在7~7.5时,COD去除率15%,废水B/C提高到0.34左右,可生化性得到了很大的改善,扩大了后续处理工艺的选择范围。  相似文献   

8.
朱加豪  张序  周云  王钧 《水处理技术》2023,(5):125-128+134
通过将物化预处理和水解酸化-接触氧化工艺组合,对汽车配件废水的污染物去除效率和微生物的生物活性进行了研究。结果表明,物化预处理过程中对汽车配件废水的最佳组合为:pH为9.97,PAM为2.67 mg/L,PAC为1.59 g/L,最佳组合下对COD去除效率最高达到80.0%。水解酸化-接触氧化工艺对物化预处理后的废水,在HRT为10 h、DO为2~3 mg/L时,其主要污染物指标BOD5和COD的去除率分别高达92.7%±0.53%和88.2%±0.27%。激光共聚焦图像表明水解酸化池和接触氧化池的生物活性较高,有利于微生物对废水中的污染物进行降解。  相似文献   

9.
针对江苏某工业园内综合印染废水,采用混凝沉淀—ABR水解酸化—A2/O—曝气生物滤池工艺对其进行了中试处理研究。结果表明:印染废水经ABR水解酸化处理后,废水的可生化性显著提高,整个工艺对BOD5、COD、TP、TN、色度去除效果良好,去除率分别为87%、93%、76%、94%、68%,最终出水水质达到《城镇污水处理厂污染物排放标准》(GB 19819—2002)一级B标准。  相似文献   

10.
生物接触氧化法处理酵母废水   总被引:1,自引:0,他引:1  
研究了用生物接触氧化法处理酵母废水,试验结果表明BOD_5去除率可大于98%、COD去除率达到65%、色度去除率为20%。并求得了当接触时间为3h时,COD和BOD_5的最佳容积负荷分别为39.1和32.8kg/m~3·d。  相似文献   

11.
为提高高浓度有机废水厌氧处理的效能,采用膜孔径为50 nm的超滤膜组件在两相厌氧反应器前端对废水进行预处理,然后对废水进行两相厌氧水解.实验结果表明,当过膜压力为0.2 MPa时,COD去除率为37.3%,SS去除率可达87.8%.与未经过超滤膜预处理的水样进行对比,经过超滤膜处理后的水样在厌氧处理时COD去除率可提高5%~7%,沼气产率增加约为0.1 m3/kg(COD).同时投加比、P含量和HRT2/ HRT1比值对COD去除率和沼气产率也存在一定的影响,当投加比15.0%、PO43-投加量为71.5 mg/L、HRT2/ HRT1比值为3~4时,两相厌氧处理茶多酚废水达到最佳效果,COD最高去除率可达83.5%,沼气产率达0.46 m3/kg(COD).  相似文献   

12.
以印染废水为研究对象,探讨了混凝沉淀+水解酸化+膜生物反应器(MBR)工艺处理印染废水的可行性。试验确定PAC为处理印染废水的最佳混凝剂。确定水解酸化反应器中MLSS为8 g/L左右,HRT为16 h,MBR反应器中MLSS为8 g/L左右,HRT为8 h比较合理。MBR反应器对有机物的去除主要取决于生物反应的效果,膜的截留作用强化了MBR对色度和COD的去除。本工艺在处理印染废水时可获得连续稳定的处理效果,出水水质完全满足纺织印染整行业水污染物一级排放标准。  相似文献   

13.
采用电-生物耦合水解-好氧接触氧化法处理酸性红18染料废水,考察了电流密度对处理效能的影响。在水解反应器施加微电场,电-生物水解HRT为12 h,好氧接触氧化HRT为7.95 h,电流密度分别为0.024、0.048、0.071和0.095 m A/cm2。该方法对酸性红18染料废水的质量浓度、色度、COD都有较好的去除效果,对氨氮也有一定的去除效果,其去除率都随电流密度的提高而增加。结果表明当电流密度增加到0.095 m A/cm2时,对质量浓度、色度、COD和氨氮的处理效果最佳,此时电-生物系统对各指标的去除率分别为98.70%、95.67%、90.06%和53.15%。  相似文献   

14.
采用水解酸化-混凝沉淀工艺,对活塞环生产综合废水进行预处理.研究了水解酸化时间、混凝沉淀药剂类型及其投加量等因素对废水COD去除的影响.结果表明,该组合工艺将废水的COD由9 656 mg/L降至3 081.2 mg/L,COD去除率达到67.8%,提高了废水的可生化性,并确定了水解酸化的最佳水力停留时间以及混凝剂的最佳投药比,为活塞环工业废水的大规模处理提供了应用参数.  相似文献   

15.
采用水解-好氧工艺对香兰素废水进行处理,在进水COD在≤1 000 mg/L,BOD5≤300 mg/L,色度≤80倍.水解停留时间≥4 h,好氧曝气停留时间1>25 h,常温的条件下,出水COD≤100 mg/L,色度降为10倍,COD去除率90%.  相似文献   

16.
采用水解分别作为MBR、BAF两种好氧工艺的预处理工艺,对浮选废水中的苯胺黑药、丁基黄药、乙硫氮、十八胺进行降解处理。结果表明,当进水COD在300 mg/L左右时,废水pH为6~8,HRT=48 h,DO质量浓度为4mg/L,水解-MBR、水解-BAF工艺对COD的去除率分别达到73.75%和67.47%。  相似文献   

17.
针对浙江省绍兴县某泵站的印染废水混合样,设计了水解酸化-活性焦曝气池-活性焦生物滤池的组合工艺对印染废水进行深度处理。结果表明,活性焦能通过"物理吸附/生物降解"协同作用强化活性污泥絮体的净化能力,强化出水水质,减少外排水对环境的污染。该组合工艺对进出水COD和色度具有较好的处理效果,在平均进水COD为1 329 mg/L的情况下,出水COD平均达到51 mg/L,COD去除率达到了95.3%,色度由原来的625倍降至16倍,工艺运行稳定,能够满足对印染废水的排放要求。  相似文献   

18.
采用隔油-絮凝预处理-水解酸化-好氧处理-深度处理组合工艺对某钻井平台高盐度废水进行处理试验研究.采用聚合硫酸铁(PFS)、聚丙烯酰胺(PAM)和双氧水(H2O2)组合化学混凝法进行预处理,深度处理采用生物活性炭工艺.结果表明,组合混凝工艺处理效果显著优于普通混凝工艺,废水COD和色度去除率分别可达94.2%和99.4%;生物活性炭工艺在停留时间为6h时COD平均去除率为77.4%;中试装置处理效果稳定,出水COD低于60mg·L-1,达到天津市污水综合排放标准(DB 12/356-2008)二级排放标准.该工艺处理废水费用约为11元·m-3.  相似文献   

19.
针对印染废水水质复杂、高浓、难降解等特点,引入"水解酸化+好氧生化+臭氧氧化+砂过滤+UF超滤膜+RO反渗透膜"组合工艺在处理印染废水中实际应用。结果表明,该组合工艺对印染废水处理效果好,COD、BOD_5、SS、色度的去除率大于85%,出水水质稳定,各项水质指标均满足排放标准要求,且回用水满足GB/T 18920-2002中城市杂用水及道路清扫杂用水水质标准。  相似文献   

20.
采用混凝-铁碳微电解-水解酸化-生物接触氧化池-Biofor(一段式生物过滤氧化反应器)工艺处理硝基苯胺类生产中间体类农药废水。结果表明,混凝对COD去除效率为37%,色度去除效率为30%;铁碳微电解氧化COD去除效率为60%,色度去除率为57%。预处理废水在经过水解酸化-生物接触氧化池-Biofor工艺深度处理,出水COD在40 mg/L左右,色度在50倍左右,SS质量浓度在30 mg/L左右。出水水质要求达到污水综合排放标准(GB 8978-1996)的一级标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号