首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以合成废水为研究对象,通过比较淀粉作为碳源对厌氧-好氧和好氧-延长闲置工艺生物除磷效率,单位周期营养盐和内聚物变化以及关键酶活性探究了淀粉作为碳源强化生物除磷可行性。结果表明,淀粉可以作为碳源用于生物除磷,且A/O和好氧-延长闲置工艺中生物除磷效率分别为91.5%和96.5%。好氧-延长闲置工艺中富集更多的聚磷,A/O厌氧期合成内聚物聚羟基烷酸酯(PHA)的质量分数最大为22.3 mg/g,好氧-延长闲置工艺合成PHA的质量分数最大为6.8 mg/g。此外,好氧-延长闲置工艺中聚磷酸盐激酶(PPK)的活性高于A/O。  相似文献   

2.
针对城镇污水处理厂进水碳源不足,导致生物除磷效果难以稳定维持的问题,通过实验室小试与现场生产性试验相结合,分析了初沉池不同泥位条件下初沉、剩余混合污泥厌氧发酵产挥发性脂肪酸(VFAs)对生物除磷效果的影响。结果表明,当初沉池泥位由1.0 m增加到2.5 m时,初沉池出水VFAs质量浓度由17.8 mg/L提高到44.0 mg/L。后续改良AAO工艺厌氧段释磷量、好氧段吸磷量较低泥位分别增加了3.26、3.29 mg/L。初沉池2.5 m高泥位条件下,曝气池出水溶解态总磷(STP)质量浓度降为0.06 mg/L,仅为初沉池1.0 m低泥位时的1/2。对磷组分分析发现可溶性活性磷酸盐(SRP)去除率得到明显提升。研究可以为污水处理厂利用内碳源开发提高生物除磷效果提供技术支撑。  相似文献   

3.
采用序批式活性污泥反应器,分别在厌氧-好氧、厌氧-缺氧-好氧运行方式下,研究了分段进水强化城市生活污水同步脱氮除磷的效果。结果表明,水总体积的30%进入厌氧段即可满足磷酸盐的去除对碳源的要求;SBR以厌氧-缺氧-好氧方式运行时,缺氧段NO3--N的质量浓度为20 mg·L-1时,可完全去除磷酸盐,并且随着二次分配的碳源增加,反硝化脱氮的效果明显提高,出水时硝酸盐氮含量大幅减少,获得了同步脱氮除磷的效果。  相似文献   

4.
低碳源污水的脱氮除磷技术研究进展   总被引:1,自引:0,他引:1  
总结了低碳源污水的主要脱氮策略(外加碳源、优化进水策略、短程硝化反硝化、厌氧氨氧化等),除磷策略(外加碳源、分段进水、生物强化除磷等)以及同步脱氮除磷对策(反硝化除磷、分段进水等)。指出改进现有工艺充分利用进水碳源、外加其他富含有机碳的废物资源、开发寻求碳源需求低的新型脱氮除磷工艺、结合实时在线控制优化系统运行是提高低碳源污水的脱氮除磷效率的较佳途径。  相似文献   

5.
通过改变强化生物除磷(EBPR)工艺好氧反应阶段的反应温度实现对微生物能量代谢活性的改变,进而研究微生物能量代谢活性变化对好氧吸磷能力的影响。在微生物经历完全相同的缺氧-厌氧环境下,分别进入反应温度控制为12、20、28℃的好氧反应器,微生物脱氢酶活性、电子传递体系活性以及参与生化反应三磷酸腺苷(ATP)含量的水平均随着反应温度的上升而提高;随着能量代谢活性的增强,微生物好氧吸磷效率、好氧吸磷动力以及好氧阶段聚β羟基丁酸酯利用效率均相应提高;不同水质之间由于挥发性脂肪酸(VFA)含量不同,微生物能量代谢活性对好氧吸磷能力的影响程度不同,微生物能量代谢活性越强,处理水中VFA含量越高,其除磷能力越强。  相似文献   

6.
采用厌氧/好氧和厌氧/缺氧两阶段方法培养反硝化聚磷菌,研究了第一阶段系统的除磷性能。结果表明,稳定运行的强化生物除磷系统,具有良好的除磷性能,出水磷的质量浓度小于0.5 mg/L,除磷率大于93%。通过厌氧/好氧交替方式运行,反硝化聚磷菌占聚磷菌的比例约为21.2%。缺氧段硝酸盐的消耗量与磷的摄取量成线性关系,缺氧吸磷速率约为好氧吸磷速率的49.3%。  相似文献   

7.
碳氮比对AAO-BAF工艺运行性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
AAO-BAF工艺由厌氧-缺氧-好氧反应器和曝气生物滤池组成,属于外硝化反硝化除磷工艺。以实际生活污水为处理对象,通过调节进水COD浓度(从211 mg·L-1增加到675 mg·L-1),研究了进水COD和TN的比(C/N)对AAO-BAF工艺运行性能的影响。结果表明,进水有机物浓度低或高,可以通过限制厌氧释磷量或竞争AAO反应器缺氧区的NO3-,从而影响工艺的反硝化除磷效果。当进水C/N大于4,小于7时,AAO-BAF工艺对COD、TN和PO43-的去除率分别可达86%、78%和90%以上。很高的C/N(如9.5)会使缺氧区内存在大量挥发性脂肪酸(VFA),导致普通反硝化菌迅速消耗反硝化聚磷菌(DPAOs)的电子受体NO3-。  相似文献   

8.
针对碳、氮、磷比例失调碳源偏低城市污水,因碳源不足而降低脱氮除磷效率的难题及连续流生物膜法除磷率低的缺点,为提高生物膜的除磷效率,通过构建厌氧/好氧交替运行的序批式生物膜反应器(SBBR),合理调控厌氧和好氧段的运行时间,处理广州地区碳源偏低的城市污水,研究其生物除磷的效果和控制影响因素.结果显示,在无需额外添加碳源的条件下,当进水TP浓度为1.65~7.10mg/L,出水TP浓度可在0.085~0.5mg/L之间,去除率达到90%以上.在此基础上,对SBBR的厌氧和好氧段的工艺特性及控制影响因素进行系统分析,指出厌氧/好氧交替运行的工序是SBBR处理城市污水高效除磷的前提和基础,而确保厌氧磷的最大有效释放是SBBR系统高效除磷的关键.  相似文献   

9.
A2O工艺处理低C/N比生活污水的试验研究   总被引:12,自引:2,他引:10       下载免费PDF全文
吴昌永  彭永臻  彭轶 《化工学报》2008,59(12):3126-3131
采用52.5 L的A2O试验装置处理实际生活污水,研究了A2O工艺在处理低C/N比生活污水时的脱氮除磷特性,并探讨了如何通过强化缺氧吸磷来提高系统的脱氮除磷效率。试验结果表明:在厌氧/缺氧/好氧体积比为1/1/2、HRT为8 h、污泥回流比为70%、内回流比为300%的工况下处理C/N为7.89的生活污水,TN和SOP去除率分别能够达到85.4%和93.3%,系统中存在反硝化除磷,缺氧吸磷占总吸磷量的25.3%。同样的运行条件下处理C/N为4.20的生活污水时,SOP去除几乎不受影响,但TN去除率降低至62.2%,平均出水TN浓度也超过20 mg•L-1。维持厌氧区体积不变,增大缺氧区体积,使得缺氧/好氧体积比为5/8时,TN去除率可上升到70.7%,缺氧吸磷占总吸磷量的55.2%。同时改变内回流比的试验表明250%的内回流比能最大程度地强化反硝化除磷的作用,此时TN去除率可提高至77.3%。强化A2O工艺中的反硝化除磷,能克服碳源不足对脱氮除磷的影响,显著提高低C/N比污水的脱氮除磷效率。  相似文献   

10.
强化生物除磷工艺微生物种群结构分析   总被引:3,自引:0,他引:3       下载免费PDF全文
李伟光  田文德  康晓荣  张卉  郭旋 《化工学报》2011,62(12):3532-3538
引言强化生物除磷工艺以其高效、低耗、简单易操作在世界范围内得到了广泛的应用,近年来反硝化生物强化除磷工艺一直是个研究热点,主要是由于反硝化生物强化除磷工艺可通过反硝化除磷菌(DPB)在传统的厌氧/缺氧/好氧工艺的缺氧池中利用内碳源聚β-羟基丁酸酯(PHB)作为碳源实现反硝化吸磷,同时亦可反硝化脱氮,一碳两用,可节省大量的碳源需求,同时也减少了一定的动力消耗和污泥产量,尤其适合低碳氮比的  相似文献   

11.
针对碳、氮、磷比例失调碳源偏低城市污水,因碳源不足而降低脱氮除磷效率的难题及连续流生物膜法除磷率低的缺点,为提高生物膜的除磷效率,通过构建厌氧/好氧交替运行的序批式生物膜反应器(SBBR),合理调控厌氧和好氧段的运行时间,处理广州地区碳源偏低的城市污水,研究其生物除磷的效果和控制影响因素。结果显示,在无需额外添加碳源的条件下,当进水TP浓度为1.65-7.10mg/L,出水TP浓度可在0.085-0.5mg/L之间,去除率达到90%以上。在此基础上,对SBBR的厌氧和好氧段的工艺特性及控制影响因素进行系统分析,指出厌氧/好氧交替运行的工序是SBBR处理城市污水高效除磷的前提和基础,而确保厌氧磷的最大有效释放是SBBR系统高效除磷的关键。  相似文献   

12.
厌氧/好氧交替式生物滤池除磷工艺中生物膜特性   总被引:2,自引:0,他引:2  
采用厌氧/好氧交替式生物滤池工艺,对低碳磷比的模拟生活污水进行生物除磷。随运行时间的延长,培养出含有高比重聚磷菌的生物膜,具有高效聚磷和除磷功能,其生物膜含磷量最高达110 mg.g-1,厌氧最高释磷达65mg.L-1,最优出水TP质量浓度为0.4 mg.L-1。通过不同方法分析生物膜特性,探讨了不同运行阶段下生物滤池中富含聚磷菌生物膜的分布特性及其中聚磷菌特性。  相似文献   

13.
进水方式及水质对厌氧/缺氧系统反硝化聚磷的影响研究   总被引:1,自引:0,他引:1  
采用厌氧/缺氧(A/A)SBR和人工废水,研究了不同硝酸盐投加方式下反硝化除磷的效果,探讨了进水方式以及水质对反硝化除磷的影响.结果表明,在厌氧段进水,反应器内初期形成的较高浓度磷会对聚磷菌释磷及其吸收碳源产生抑制作用.控制投加的COD量,使反应器内在厌氧段存在充足的碳源而在缺氧段时基本不残留碳源,则有利于提高除磷效果.厌氧/缺氧交替的环境,若厌氧段初始进水后反应器内初期磷浓度较高则有利于反硝化而非反硝化聚磷.  相似文献   

14.
刘丽 《水处理技术》2020,46(8):39-43,48
在序批式反应器(SBR)中探究了氯贝酸(CA)在强化生物除磷(EBPR)系统中的环境行为及对除磷性能,内聚物变化的影响。结果表明,CA在EBPR系统中去除有限,并且主要以污泥吸附为主。低含量CA(质量浓度0.01mg/L)对EBRP性能影响不明显,而高含量CA(质量浓度0.1、0.2 mg/L)抑制生物除磷和有机物去除。质量浓度0.2mg/L的CA导致生物除磷效率下降至68.5%。典型周期探究发现,质量浓度0.2 mg/L的CA严重抑制厌氧净释磷量和释磷速率至27.4 mg/L和0.21 mg/min,显著低于空白组。质量浓度0.2 mg/L的CA抑制胞内聚合物聚羟基脂肪酸酯的合成和促进糖原质的降解,促进聚糖菌繁殖。CA抑制外切聚磷酸盐水解酶的活性,而对聚磷酸盐激酶的活性影响不大。  相似文献   

15.
为了提高污水脱氮除磷的效率,研究采用序批式反应器(SBR工艺)厌氧、好氧和缺氧(AOA)的运行方式富集反硝化聚磷菌(DPB),实现同步脱氮除磷。结果表明:在好氧段投加甲醇作为碳源(25—40 mg/L)可有效抑制好氧吸磷,对硝化反应影响较小,能够在缺氧段实现同时反硝化脱氮除磷。SBR反应器稳定运行10个月,当进水NH4+-N、PO43--P分别为30,15 mg/L时,总氮(TN)和PO43--P的平均去除率分别为82.5%和92.1%。聚磷菌能够利用硝酸盐作为电子受体,DPB占总聚磷菌的比例达到44.8%。与A2O运行方式相比,AOA运行方式更有利于实现DPB的富集。  相似文献   

16.
剩余污泥转化为SCFAs及用于增强生物除磷的研究进展   总被引:1,自引:0,他引:1  
发酵城市污水处理厂的剩余污泥可产生易于生物利用的短链脂肪酸(SCFAs),针对某些城市污水处理厂进水中所含溶解性有机物不能满足生物法需求的情况,可采用投加污泥发酵液作为外碳源来解决.SCFAs是增强生物除磷(EBPR)中聚磷菌厌氧合成聚羟基烷酸(PHAs)的重要基质,其浓度与类型对除磷效果有重要影响.本丈就剩余污泥发酵产酸、SCFAs对EBPR的影响及剩余污泥发酵液用于EBPR的研究进行了综述.  相似文献   

17.
采用厌氧/好氧/缺氧模式运行的SBR工艺处理模拟城市污水,考察外加碳源乙酸钠和污泥水解酸化上清液对其脱氮除磷效果的影响。模拟城市污水,进水水质COD为400 mg/L、氨氮为60 mg/L、磷酸盐为7 mg/L。结果表明:不投加碳源时,系统对COD、氨氮、磷酸盐的去除率分别为90%、91%、82%;乙酸钠投加量为60 mg/L的条件下,外加乙酸钠系统对COD、氨氮、磷酸盐的去除率分别为93%、100%、100%,磷的去除主要是通过好氧聚磷作用;上清液投加量折合进水COD为30 mg/L时,外加污泥水解酸化上清液系统对COD、氨氮、磷酸盐的去除率分别为97%、99%、95%,系统中出现明显的反硝化除磷现象,反硝化除磷占24%。  相似文献   

18.
厌氧HRT对A/O除磷工艺的影响   总被引:2,自引:0,他引:2  
为系统考察厌氧水力停留时间(AHRT)对生物除磷效果的影响,本文以实际生活污水作为进水,在实验室连续流厌氧/好氧(A/O)除磷系统稳定运行的基础上,统计了不同AHRT下系统除磷效果及胞内贮存物的变化。设计批式实验,考察了AHRT较长情况下生物增强除磷代谢过程,针对实验过程中出现的厌氧聚羟基链烷酸酯(PHAs)分解和厌氧糖原合成现象,提出聚磷不足情况下聚磷菌代谢的假想模式。最后根据实验结果指出A/O除磷工艺AHRT的确定应以PHAs的合成量最大作为控制目标。  相似文献   

19.
采用乙酸/丙酸交替、葡萄糖、实际生活污水为碳源长期驯化的三个强化生物除磷系统,研究了不同碳源对磷的释放和聚羟基烷酸(PHA)转化的影响、聚磷菌种群结构以及微生物代谢PHA和糖原的厌氧化学计量学。结果表明,从182 d起三个系统均获得稳定的除磷性能,第300 d三个系统内聚磷菌所占全菌的比例分别达到:89%±3%、55%±3%、45%±4%。乙酸、葡萄糖、生活污水为碳源时,聚磷菌细胞内贮存聚羟基丁酸(PHB)和聚羟基戊酸(PHV),丙酸为碳源PHA完全由PHV组成,四种类型碳源都未检测到聚二甲基三羟基戊酸(PH2MV)的生成。计量学研究表明:聚磷菌吸收1 C-mol的乙酸,细胞内合成1.15 C-mol PHB,0.15 C-mol PHV,分解0.47 C-mol糖原;吸收1 C-mol的丙酸生成0.44 C-mol的PHV,分解0.271 C-mol的糖原;吸收1C-mol的葡萄糖生成极少量的PHB和0.16C-mol PHV,分解0.16 C-mol糖原;以实际生活污水为碳源,消耗1 mg的COD,合成0.98 mg PHB、0.13 mg PHV(以COD计)。当以乙酸为碳源时获得最高的厌氧释磷量及最大的释磷速率,分别为:134 mg·L-1和23.80 mg P·(g VSS)-1·h-1。以丙酸与葡萄糖为碳源时释磷速率相似,以生活污水为碳源的情况下释磷速率最小。  相似文献   

20.
针对生物曝气滤池(BAF)处理效率常因进水碳源不足和硝化不充分而受到限制的问题,本研究报道了1种厌氧-缺氧-好氧(A~2O)耦合BAF强化污水脱氮除磷和有机物去除的新策略,并进一步探究进水C/N对营养盐污染物去除的影响。结果表明,A~2O耦合BAF能够有效去除营养盐,并且COD、TN和TP的去除率分别为91%、84.9%和92%。C/N对A~2O耦合BAF反应体系COD的去除影响不明显,并且COD去除主要集中在厌氧区域。m(C)/m(N)由3增加至5,TN和磷酸盐的去除效率增加,但进一步增加C/N,TN和磷酸盐的去除不明显,因此A~2O耦合BAF体系的优化m(C)/m(N)是5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号