首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Data of an x-ray structural study of single crystals of silicon carbide α-SiC(6H) and a new, previously unknown modification γ-SiC with a rhombic lattice are described. The rhombic-lattice parameters are related to the parametera of the hexagonal and cubic lattices of SiC in the following way:a r=a h,b r=3a h,c r=3a c. Translated from Steklo i Keramika, No. 3, pp. 19 – 22, March, 2000.  相似文献   

2.
The morphology and crystal structures of poly(2,6-naphthalene terephthalate) (PNT) and poly(2,6-naphthalene naphthalate) (PNN), prepared by confined thin film melt/solution polymerization (CTFMP/CTFSP), were characterized by transmission electron microscopy, electron diffraction and molecular modeling. The unit cells of PNT and PNN are both monoclinic (P121/a1 space group) with parameters a=8.18 Å, b=5.80 Å, c=14.9 Å and β=101.9° for PNT, and a=7.85 Å, b=5.97 Å, c=17.1 Å and β=99.5 for PNN, respectively. Simulated ED patterns from the proposed unit cells agree well with the observed ED patterns. The crystal structures of PNT and PNN are also compared with those of poly (p-phenylene naphthalate) (PPN) and poly(2,6-oxynaphtalate) (PONA).  相似文献   

3.
Summary The radical polymerizations of 2-, 3-, and 4-(phenylethynyl)styrenes (1a–c) and the copolymerizations of 1a–c (M1) with styrene (M2) were carried out using AIBN as the initiator in toluene at 60°C. The number-average molecular weights (M ns) were extremely low for poly(2-phenylethynylstyrene) (2a) and poly[(phenylethynyl)styrene-co-styrene] (3a), and increased in the order of 2a, 3a << 2b, 3b < 2c, 3c. Monomer reactivity ratios were determined as r 1= 1.80 and r 2= 0.51 for 1a, r 1= 1.72 and r 2= 0.53 for 1b, and r 1= 3.17 and r 2= 0.24 for 1c. Polymers 2a–c and 3a–c underwent an exothermic reaction at elevated temperature to form organic solvent-insoluble polymers. Although the decomposition of 2a was observed from 200°C, 2b and 2c exhibited a high heat-resistance property in both nitrogen and air atmospheres, in particular, 2b showed no significant weight loss below 450°C. Received: 28 January 1998/Accepted: 5 March 1998  相似文献   

4.
Y.S Lee  K Adachi 《Electrochimica acta》2003,48(8):1031-1039
Well-defined orthorhombic LiMnO2 was synthesized using LiOH and γ-MnOOH starting materials at 1000 °C in an argon flow by quenching process. X-ray diffraction (XRD) revealed that the compound showed an orthorhombic phase of a space group with Pmnm (a=2.806 Å, b=5.750 Å, and c=4.593 Å). The prepared compound was composed of particles of about 5-15 μm diameter with a bar-shape and small spherical one of about 1-2 μm. It showed very small initial discharge capacity of about 34 mA h g−1 in the (3+4) V region at room temperature. However, after 12 h grinding, the LiMnO2 delivered 201 mA h g−1 in the first cycle and still delivered 200 mA h g−1 after 50 cycles at room temperature. We found that the initial discharge capacity of LiMnO2 agreed well with its specific surface area by Brunauer, Emmett and Teller (BET) analysis. Especially, the grinding treatment played an important role to activate the lithium insertion-extraction into the LiMnO2 layer in the 3 V region.  相似文献   

5.
《Ceramics International》2020,46(8):12238-12242
The new borophosphates were successfully synthesized by solution combustion synthesis assisted with glycine. The obtained materials were systematically characterized by Fourier-transform infrared spectroscopy, X-ray powder diffraction, UV–visible spectroscopy, thermogravimetric analysis, scanning electron microscopy, Brauner-Emmett-Teller surface area, and magnetometry. The Rietveld refinements indicated that Fe2B(PO4)3 is a hexagonal, space group P63/m with a = b = 8.029 and c = 7.408. As Cr substitutes the Fe atoms, there is a significant decrease in the lattice parameters. When all Fe atoms are replaced by Cr, Cr2B(PO4)3 is formed and the structure turns out to be a trigonal, space group P3 with a = b = 7.950 and c = 7.360. The materials are thermally stable and demonstrate paramagnetic behavior at room temperature. The magnetization increases as the iron content increases because of the high magnetic moment of the iron ion. Temperature-dependent magnetic measurements reveal that Fe2B(PO4)3 has a Néel transition at 30 K and the Néel temperature decreases with Cr substitution.  相似文献   

6.
In the present work, a high quality (Q) Ca1.15Sm0.85Al0.85Ti0.15O4 (CSAT) ceramic was prepared via reaction sintering (RS) method. The phase structure, surface morphology, packing fraction (PF), and valence bond of the ceramic were systematically investigated. By studying the X-ray diffraction (XRD) pattern of the ceramic, it was determined to exhibit a single-phase tetragonal structure with the dimensions of a = b = 3.6943(13)Å and c = 12.0320(23)Å and volume of V = 164.22(10) Å3. The influence of the intrinsic quality loss factor on the Q × f value was investigated by calculating the PF. Simultaneously, the bond valence of the samarium (Sm) sites was evaluated to elucidate the relationship with the temperature coefficient of resonant frequency (τf). The CSAT ceramic was sintered at 1550 °C for 6 h and exhibited exceptional characteristics in terms of the relative dielectric constant (εr) = 17.5, quality factor (Q × f) = 66700 GHz, and τf = ?6.93 ppm/°C. These results highlighted the excellent suitability of the RS method for preparing CSAT ceramics with outstanding microwave dielectric properties.  相似文献   

7.
The radical polymerizations of 2-, 3-, and 4-(trimethylsilylethynyl)styrenes (1 a – c) and copolymerizations of 1 a – c (M1) with styrene (M2) have been studied. Copolymerization parameters were determined as r1 = 1.22 and r2 = 0.54 for 1 a, 1 = 1.10 and r2 = 0.90 for 1 b, and r1 = 1.42 and r2 = 0.38 for 1 c. The deprotection of the trimethylsilyl groups in poly[(trimethylsilylethynyl)styrene] (2 a – c) and poly[(trimethylsilylethynyl)styrene-co-styrene] (4 a – c) using (C4H9)4NF smoothly proceeded to yield poly(ethynylstyrene) (3 a – c) and poly(ethynylstyrene-co-styrene) (5 a – c), respectively, which underwent curing reactions at elevated temperature to form crosslinking polystyrenes. Received: 31 March 1997/Revised: 2 June 1997/Accepted: 3 June 1997  相似文献   

8.
The objective of this paper was to investigate the physical significance of the Kawakita and Adams parameters derived from the compression of some granular solids. Four model granules of different expected deformation behaviour were prepared by varying the composition and porosity of the granules. The granules were nearly spherical and of similar size and showed a variation in mechanical properties in terms of their elasticity, plasticity, fracture strength and brittleness. Due to the size and shape of the granules, compression due to granule rearrangement was generally limited. The Kawakita a parameter approximated the maximal engineering strain of the granular solids and both the Kawakita a and b− 1 parameter reflected the plasticity of the granules. The Adams parameter τ0 seemed to reflect the initial cracking of granules. Thus, the combined use of the Kawakita parameters a and b− 1 and the Adams parameter τ0 may give a comprehensive representation of the compression behaviour of granular solids.  相似文献   

9.
Potassium dawsonite is formed as an intermediate compound during the alkaline hydrolysis (AH) in calcium aluminate cements (CACs). A synthesis method of potassium dawsonite has been developed. The crystal structure of potassium dawsonite KAl(CO3)(OH)2 has been solved by direct methods from X-ray powder diffraction data and refined with the Rietveld method. It crystallises in the orthorhombic Cmcm space group with unit cells parameters a=6.3021(3) Å, b=11.9626(5) Å, c=5.6456(3) Å and Z=4. The structure consists of carboaluminate chains, formed by the basic unit [Al2(OH)4(CO3)2]2− arranged along the c axis. The carbonate groups are placed in an alternate manner at both sides of the carboaluminate chains. The carboaluminate chains are also held together by the K+ cations that are located in the middle of three such chains. Finally, the chemical reactions explaining the AH process in CACs are postulated.  相似文献   

10.
Single phase, dense La(Co1/2Ti1/2)O3 (LCT) ceramics have been fabricated using conventional solid state synthesis. Samples were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and their dielectric properties were studied at radio and microwave frequencies. X-ray and electron diffraction conclusively revealed that LCT contained in-phase and antiphase rotations of the O-octahedra, consistent with and aac+ tilt system in the Glazer classification. However, XRD indicated that the Co and Ti ions were disordered on the B-site whereas TEM and Raman spectroscopy exhibited reflections and modes which suggested that partial ordering may be present. Moreover, some Raman bands could only be explained by assuming that at least some of the octahedra exhibited a Jahn–Teller distortion. Dielectric measurements indicated that LCT is insulating with low dielectric loss, 0.0024 at 1 MHz and frequency independent relative permittivity, εr=25. A quality factor, Q×fo=38,000 was obtained at microwave frequencies along with a temperature coefficient of the resonant frequency, TCF=−42 MK−1.  相似文献   

11.
A series of trivalent lanthanide complexes of type [Ln(L) NO3)(S)n](NO3)m(S)n, have been synthesized by the reaction of 2,6-diacetylpyridine-bis-(benzoylhydrazone) (H2L) with lanthanide(III) nitrates in ethanol. These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data revealed the formation of 1:1 (metal:ligand) stoichiometry. Molar conductance in dmf gives 2:1 electrolytes in all the complexes. Magnetic moment values are close proximity of the Van Vleck values. IR study suggests the coordination of the ligand through the azomethine and the oxygen of the hydrazonic moiety. The nitrate ion is also found to be bidentate in all the complexes. The crystal structures were determined. 6, C27H31N6O7S2Gd: a=b=8.6821(4) Å, c=84.363(5) Å, tetragonal P41212 and Z=8. bf 7, C25H25N6O6SDy: a=11.750(3) Å, b=13.250(3) Å, c=36.000(6) Å, β=98.50(2), monoclinic, C2/c, Z=8. 9, C24H25N6O7Yb: a=10.750(2) Å, b=17.750(3) Å, c=14.250(4) Å, β=99.00(2), monoclinic, P21/n, Z=4. In these complexes the lanthanide ion assumes a nine coordinated geometry for Gd and an eight coordinated geometry for Dy and Yb.  相似文献   

12.
The first 1-D double-helical-chain coordination polymer, [(H2O)Cu(BPDC)] (2,2-biphenyldicarboxylate), based upon the binuclear square pyramidal copper(II)-pair motifs has been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction technique. [(H2O)Cu(BPDC)] crystallized in orthorhombic crystal system, space group Cmca with unit cell dimensions a=21.073(6) Å, b=7.118(2) Å and c=17.670(5) Å, Z=8.  相似文献   

13.
J. Ruan 《Polymer》2006,47(15):5478-5493
The crystal structure of the Form II modification of isotactic poly(4-methyl-pentene-1) (P4MP1) is derived by molecular mechanics modeling based on electron diffraction patterns of single crystals and on earlier X-ray powder diffraction patterns. This turns out to be a second structure derivation, since we became aware, after its completion, of the earlier work of De Rosa [De Rosa C. Macromolecules; 2003, 36, 6087] based on X-ray powder patterns and NMR data. In essential agreement with his analysis, the unit-cell is monoclinic with parameters a=18.50 Å, b=10.43 Å, c=7.22 Å, γ=113°. The chain has four propylene units per turn but two fold symmetry. Different structures are considered. The most straightforward ones have a space group P21/a (c unique axis) and the cell contains two anticline enantiomorphous helices (i.e. Right up-Left down, or Right down-Left up), with possible statistical presence of up- and down-pointing helices at each helix site. However, detailed single crystal electron diffraction patterns display weak equatorial reflections that should be extinct for P21/a, indicating a lower cell symmetry. A model with P1121 symmetry made of antichiral but isoclined (e.g. Right up-Left up) helices accounts better for the experimental pattern. It is suggested that this lower symmetry results from, or at least is favored by, conformational restrictions set by chain folding on the stem chirality and clinicity of helical polyolefins, as analyzed by Sadler et al. [Sadler DM, Spells SJ, Keller A, Guenet JM. Polym Commun, 25, 290, 1984] and Petraccone et al. [Petraccone V, Pirozzi B, Meille SV. Polymer, 27, 1665, 1986]: two stems linked by a fold must be either antichiral or anticline, which rules out the P21/a symmetry. The structure taking into account the impact of folds is consistent with the single crystal habit (preferred ac growth planes). It corresponds to the ‘chain folded lamellar’ variant of the P4MP1 Form II crystal structure whereas the cells with P21/a symmetry would be suitable models for the ‘fiber’ (non-folded) variant.  相似文献   

14.
The crystal structures of two molecular complex phases of syndiotactic polystyrene (s-PS) with 1,3,5-trimethyl-benzene (TMB) and 1,4-dimethyl-naphthalene (DMN) have been described. These structures present a monoclinic unit cell in which the s(2/1)2 polymer helices and guest molecules are packed according the space group P21/a and unit cell constants: a=17.3 Å, b=15.4 Å, c=7.8 Å and γ=95.7° for s-PS/TMB and a=17.4 Å, b=17.2 Å, c=7.8 Å and γ=116.4° for s-PS/DMN. Both structures can be described as intercalates, since they present ac layers of polymer helices alternated to layers of contiguous guest molecules and a guest/monomeric-unit molar ratio of 1/2, as recently observed only for s-PS/norbornadiene molecular complex. On the basis of a comparison between crystalline structures and X-ray diffraction data of several s-PS molecular complexes, a simple criterion to anticipate their clathrate or intercalate nature has been suggested.  相似文献   

15.
A rare two-dimensional layered inorganic–organic hybrid material, strontium sulfonate Sr[C2H4(SO3)2] was synthesized by hydrothermal reaction of strontium chloride hexahydrate and ethane disulfonic acid at 160 °C. Single-crystal X-ray diffraction was utilized for structural determination. Data showed that the compound, crystallized in the monoclinic system and space group of C2/c. With cell parameters a = 8.3183(7) Å, b = 5.4416(5) Å and c = 14.9784(13) Å. The new material was extensively studied by DRIFT-infrared spectroscopy, thermogravimetric analysis, SEM and powder X-ray diffraction. Results show that the compound is thermally stable.  相似文献   

16.
《Ceramics International》2021,47(22):31691-31701
Driven by electrostatic attraction, Ce4+ ions or/and positively charged detonation nanodiamond (DND) particles can absorb onto negatively charged polystyrene (PS) spherical colloids. Three types of core-shell structured composite abrasives, PS@CeO2, PS@DND and PS@CeO2/DND, can thus be assembled. When PS@CeO2 and PS@DND were used to polish sapphire wafer at pad rotating speed of 120–150 r/min and load pressure of ~3 kg, the material removing rate (MRR) exceeded 1.0 μm h−1, 10–20 % higher than unitary abrasives. The surface profile roughness (Ra) for wafer polished by these two composite abrasives was respectively 1.25 and 0.63 nm, which is superior to CeO2 (Ra = 1.38 nm) and DND (Ra = 1.29 nm). When using PS@CeO2/DND, the polishing interface area can be increased owing to the combined effect of elastic PS spheres and intensively coated CeO2 and DND. Meanwhile, the synergistic mechanism of sapphire-CeO2 chemical reaction and the strong mechanical abrasion of DND particles benefit the polishing efficiency. MRR for this ternary composite abrasive attained 1.4–1.7 μm h−1 while sapphire can be smoothed to a sub-nanoscale roughness.  相似文献   

17.
Solid solutions of (x)Re(Co1/2Ti1/2)O3–(1  x)CaTiO3 (Re = La and Nd, abbreviated to xLCT and xNCT, respectively) where x = 0, 0.25, 0.5, 0.75 and 1 have been fabricated using solid state synthesis. Samples have been examined using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM) and their dielectric properties measured at microwave (MW) frequencies. Formation of single phase solid solutions were confirmed by XRD and the measured lattice parameters varied linearly from LCT (a = 5.66 Å, b = 7.867 Å and c = 5.494 Å) and NCT (a = 5.636 Å, b = 7.914 Å and c = 5.461 Å) to CT (a = 5.596 Å, b = 7.731 Å and c = 5.424 Å). XRD and TEM confirmed both in-phase and antiphase rotations of O-octahedra consistent with an aac+ tilt system across the entire solid solution series. Electron diffraction revealed that LCT and NCT have reflections associated with B-site cation ordering which is absent for x  0.75. MW dielectric measurements showed that LCT and NCT were highly insulating with microwave quality factor (Qf0) values of 39,000 and 34,000, respectively. Compositions anticipated to have a zero temperature coefficient of resonant frequency (τf) are 0.48LCT-CT and 0.52NCT-CT with ɛr = 45 and Qf0  5000 and ɛr = 43 and Qf0  4000, respectively.  相似文献   

18.
《Ceramics International》2016,42(14):15855-15860
A novel low-fired microwave dielectric ceramic with composition of Ba4CuTi11O27 was prepared by a conventional solid-state reaction method. A single-phase Ba4CuTi11O27 ceramic could be well densified after sintering above 950 °C for 4 h in air. A refinement using X-ray powder diffraction data was carried out in the Rietveld method using the parameters of Ba4Ti12O27 as a starting model. Ba4CuTi11O27 ceramic sintered at 975 °C has a monoclinic structure (C12/m1) with lattice parameters of a=19.8061(4) Å, b=11.4456(2) Å, c=9.9131(2) Å, β=108.8988(15) Å, V=2126.08(8) Å3, Z=4. The Ba4CuTi11O27 ceramics exhibited a low sintering temperature (~975 °C) and good microwave dielectric properties with Q×f value of 15,040 GHz, εr of 36.3 and τf value 11.9 ppm/°C. More importantly, the Ba4CuTi11O27 dielectrics demonstrated good chemical compatibility with Ag when sintered at 950 °C, keeping excellent microwave dielectric properties with Q×f=12,130 GHz, εr=36.1, τf=12.1 ppm/°C, which indicates that Ba4CuTi11O27 ceramic is a candidate for LTCC devices.  相似文献   

19.
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii).  相似文献   

20.
J.E. Trancik  J.T. Czernuszka  C. Viney 《Polymer》2006,47(15):5633-5642
Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to examine the nanostructure of a natural polymer—a spider dragline silk—that has potential applications as an engineering material. The silk studied was collected from the cob-web weaving spider Latrodectus hesperus. Single crystal and polycrystalline electron diffraction patterns indicate the presence of crystals with a bimodal size distribution, in the range of 2 nm and 40-120 nm. The chain axis of the smaller crystals is more strictly aligned with the fiber axis than that of the larger crystals. Lattice parameters for the orthogonal unit cell are: a=9.4 Å (interchain), b=7.0 Å (dipeptide, fiber axis) and c=10.8 Å (intersheet). A fine structure in single crystal electron diffraction patterns indicates possible composition-dependent lattice strains. Results of tensile tests of the spider dragline silk are reported, and a simple model is presented linking the observed nanostructural features to the force-elongation response of this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号