首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
深度学习因强大的特征提取能力已逐渐成为旋转机械故障诊断的主要方法。但深层模型缺乏领域适应能力,工况变化时性能衰退严重。迁移学习为解决变工况诊断问题提供新的途径。然而现有深度迁移学习方法大多仅对齐不同领域分布的均值中心,未考虑特征分布的流形结构,其适配性能仍难以应对不同工况复杂的机械故障信号。针对该问题,提出一种深度流形迁移学习方法,以堆叠自编码器为框架,在无监督预训练阶段同时利用源域和目标域样本训练,充分挖掘数据本质特征;针对模型微调,提出流行迁移框架,在适配分布差异同时还保持领域间特征分布结构的一致性。将新方法与现有迁移学习方法在旋转机械故障诊断案例进行充分的比较实验,结果表明,新方法优于现有方法,能显著提高变工况故障诊断精度。通过有效性分析在机理上进一步证明了融合目标域数据的无监督预训练策略和流形迁移微调策略对提高变工况故障诊断的有效性。  相似文献   

2.
现有基于深度学习的轴承故障诊断方法对数据具有一定的依赖性,要求训练数据与测试数据具有相同的分布。在变工况的条件下,网络模型的故障诊断精度会因数据分布发生变化而下降。为保证网络模型能够在变工况条件下对轴承的健康状态进行准确识别,基于无监督域自适应理论,提出一种新颖的智能故障诊断网络模型——动态卷积多层域自适应网络。该网络一方面充分利用动态卷积强有力的特征提取能力,提取更多有效的故障特征;另一方面采用相关对齐实施非线性变换,同时对齐多层故障特征分布的二阶统计量,促进源域的诊断知识向目标域迁移,提高了模型在目标域无故障标签条件下的故障识别准确率。最后,在两个数据集共14个迁移任务下进行实验,实验结果表明,动态卷积多层域自适应网络能够实现较高的故障诊断识别精度。  相似文献   

3.
在持续学习多任务过程中,持续零样本学习旨在积累已见类知识,并用于识别未见类样本.然而,在连续学习过程中容易产生灾难性遗忘,因此,文中提出基于潜层向量对齐的持续零样本学习算法.基于交叉分布对齐变分自编码器网络框架,将当前任务与已学任务的视觉潜层向量对齐,增大不同任务潜层空间的相似性.同时,结合选择性再训练方法,提高当前任务模型对已学任务判别能力.针对不同任务,采用已见类视觉-隐向量和未见类语义-隐向量训练独立的分类器,实现零样本图像分类.在4个标准数据集上的实验表明文中算法能有效实现持续零样本识别任务,缓解算法的灾难性遗忘.  相似文献   

4.
Despite the recent success in data-driven machinery fault diagnosis, cross-domain diagnostic tasks still remain challenging where the supervised training data and unsupervised testing data are collected under different operating conditions. In order to address the domain shift problem, minimizing the marginal domain distribution discrepancy is considered in most of the existing studies. While improvements have been achieved, the class-level alignments between domains are generally neglected, resulting in deteriorations in testing performance. This paper proposes an adversarial multi-classifier optimization method for cross-domain fault diagnosis based on deep learning. Through adversarial training, the overfitting phenomena of different classifiers are exploited to achieve class-level domain adaptation effects, facilitating extraction of domain-invariant features and development of cross-domain classifiers. Experiments on three rotating machinery datasets are carried out for validations, and the results suggest the proposed method is promising for cross-domain fault diagnostic tasks.  相似文献   

5.
The application of transfer learning to effectively identify rolling bearing fault has been attracting much attention. Most of the current studies are based on single-source domain or multi-source domains constructed from different working conditions of the same machine. However, in practical scenarios, it is common to obtain multiple source domains from different machines, which brings new challenges to how to use these source domains to complete fault diagnosis. To solve the issue, a conditional distribution-guided adversarial transfer learning network with multi-source domains (CDGATLN) is developed for fault diagnosis of bearing installed on different machines. Firstly, the knowledge of multi-source domains from different machines is transferred to the single target domain by decreasing data distribution discrepancy between each source domain and target domain. Then, a conditional distribution-guided alignment strategy is introduced to decrease conditional distribution discrepancy and calculate the importance per source domain based on the conditional distribution discrepancy, so as to promote the knowledge transfer of each source domain. Finally, a monotone importance specification mechanism is constructed to constrain each importance to ensure that the source domain with low importance will not be discarded, which enables the knowledge of each source domain to participate in the construction of the model. Extensive experimental results verify the effectiveness and superiority of CDGATLN.  相似文献   

6.
Transfer learning is an excellent approach to deal with the problem that the target domain label can not be adequately obtained when rolling bearing cross-condition fault detection. A transfer learning fault diagnosis method of multi-scale CNN rolling bearings based on local central moment discrepancy is presented in this research. The method maps bearing vibration data to a shared space by building a shared multi-scale feature extraction structure and fully connected layers. The source domain label and target domain pseudo-label are used to divide the category subspace in the shared space. And then the local central moment discrepancy is used to match source and target domain in the category subspace to realize fault knowledge transfer under different conditions. The experimental findings reveal that multi-scale CNN migration diagnosis based on local central moment discrepancy has superior accuracy and stability in diverse diagnostic tasks when compared to classic transfer learning approaches.  相似文献   

7.
持续学习作为一种在非平稳数据流中不断学习新任务并能保持旧任务性能的特殊机器学习范例,是视觉计算、自主机器人等领域的研究热点,但现阶段灾难性遗忘问题仍然是持续学习的一个巨大挑战。围绕持续学习灾难性遗忘问题展开综述研究,分析了灾难性遗忘问题缓解机理,并从模型参数、训练数据和网络架构三个层面探讨了灾难性遗忘问题求解策略,包括正则化策略、重放策略、动态架构策略和联合策略;根据现有文献凝练了灾难性遗忘方法的评估指标,并对比了不同灾难性遗忘问题的求解策略性能。最后对持续学习相关研究指出了未来的研究方向,以期为研究持续学习灾难性遗忘问题提供借鉴和参考。  相似文献   

8.
在实际工业场景下的轴承故障诊断,存在轴承故障样本不足,训练样本与实际信号样本存在分布差异的问题;文章提出一种新的基于深度迁移自编码器的故障诊断方法FS-DTAE,应用于不同工况下的轴承故障诊断;该方法首先采用小波包变换进行信号处理与特征提取;其次,采用提出的基于朴素贝叶斯与域间差异的特征选取(FSBD)方法对统计特征进行评估,选取更有利于跨域故障诊断和迁移学习的特征;然后,利用源域特征数据训练深度自编码器,将训练得到的模型参数迁移至目标域,再利用目标域正常状态样本对深度迁移自编码器模型进行微调,微调后的模型用于目标域无标签特征数据的故障分类;最后,基于CWRU轴承故障数据开展不同工况下故障诊断实验,结果表明,所提出的FS-DTAE方法能够有效提高不同工况下的故障诊断准确率。  相似文献   

9.
彭雪莹  江永全  杨燕 《计算机应用》2021,41(12):3626-3631
深度学习方法被广泛应用于轴承故障诊断,但在实际工程应用中,轴承服役期间的真实服役故障数据不易收集,缺乏数据标签,难以进行充分的训练。针对轴承服役故障诊断困难的问题,提出了一种基于图卷积网络(GCN)的迁移学习轴承服役故障诊断模型。该模型从数据充足的人工模拟损伤故障数据中学习故障知识,并迁移到真实的服役故障上,以提高服役故障的诊断准确率。具体来说,通过将人工模拟损伤故障数据和服役故障数据的原始振动信号由小波变换转换为同时具有时间和频率信息的时频图,并将得到的时频图输入到图卷积层中进行学习,从而有效地提取源域和目标域的故障特征表示;然后计算源域和目标域的数据分布之间的Wasserstein距离来度量两个数据分布之间的差异,通过最小化数据分布差异,构建了一个能诊断轴承服役故障的故障诊断模型。在不同的轴承故障数据集和不同工作条件下设计了多种不同的任务进行实验,实验结果表明,该模型具有诊断轴承服役故障的能力,同时也能从一个工作条件迁移到另一工作条件,在不同组件类型和不同工作条件之间进行故障诊断。  相似文献   

10.
Task-incremental learning (Task-IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under-explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in-depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.  相似文献   

11.
Domain adaptation learning(DAL) methods have shown promising results by utilizing labeled samples from the source(or auxiliary) domain(s) to learn a robust classifier for the target domain which has a few or even no labeled samples.However,there exist several key issues which need to be addressed in the state-of-theart DAL methods such as sufficient and effective distribution discrepancy metric learning,effective kernel space learning,and multiple source domains transfer learning,etc.Aiming at the mentioned-above issues,in this paper,we propose a unified kernel learning framework for domain adaptation learning and its effective extension based on multiple kernel learning(MKL) schema,regularized by the proposed new minimum distribution distance metric criterion which minimizes both the distribution mean discrepancy and the distribution scatter discrepancy between source and target domains,into which many existing kernel methods(like support vector machine(SVM),v-SVM,and least-square SVM) can be readily incorporated.Our framework,referred to as kernel learning for domain adaptation learning(KLDAL),simultaneously learns an optimal kernel space and a robust classifier by minimizing both the structural risk functional and the distribution discrepancy between different domains.Moreover,we extend the framework KLDAL to multiple kernel learning framework referred to as MKLDAL.Under the KLDAL or MKLDAL framework,we also propose three effective formulations called KLDAL-SVM or MKLDAL-SVM with respect to SVM and its variant μ-KLDALSVM or μ-MKLDALSVM with respect to v-SVM,and KLDAL-LSSVM or MKLDAL-LSSVM with respect to the least-square SVM,respectively.Comprehensive experiments on real-world data sets verify the outperformed or comparable effectiveness of the proposed frameworks.  相似文献   

12.
域适应是一种在训练集和测试集不满足独立同分布条件时使用的迁移学习算法.当两个领域间的分布差异较大时,会降低域内可迁移性,并且现有域适应算法需要获取大量的目标域数据,这在一些实际应用中无法实现.针对现有域适应方法的不足,基于卷积神经网络提出小样本学习下的基于特征中心对齐的域适应算法,寻找域不变特征的同时,提高目标域特征的可区分度,提高分类效果.面向小样本条件下的office-31公共数据集识别和雷达工作模式识别的仿真实验结果表明,所提方法对office-31数据集的平均识别精度比最大均值差异方法提升12.9%,而对雷达工作模式识别精度达到91%,比最大均值差异方法性能提升10%.  相似文献   

13.
传统的无监督领域自适应算法在对齐总体分布时存在分类信息流失问题,难以保证迁移学习效果。针对这个问题,提出了一种基于类内最大均值差异的分布对齐策略。该策略首先预测所有样本的伪标签,然后借助伪标签样本信息依次对齐每个类别的领域类内分布。在深度学习框架下,所提算法能够有效保留分类信息,提高了目标领域的预测能力。实验结果表明,与传统算法比较,所提算法在多个基准数据集上获得了最优的迁移学习效果。  相似文献   

14.
针对变工况条件下因源域和目标域样本数据分布差异大造成滚动轴承故障诊断准确率较低的问题,提出一种新的迁移学习方法——卷积注意力特征迁移学习(Convolutional Attention-based Feature Transfer Learning, CAFTL),并用于变工况条件下的滚动轴承故障诊断。在所提出的CAFTL中,将源域和目标域样本经过多头自注意力计算再经过归一化之后,输入到卷积神经网络中得到对应的源域和目标域特征;然后通过域自适应迁移学习网络将两域特征投影到同一个公共特征空间内;接着,利用由源域有标签样本构建的分类器进行分类;最后,利用随机梯度下降(Stochastic Gradient Descent, SGD)方法对CAFTL进行训练和参数更新,得到CAFTL的最优参数集后将参数优化后的CAFTL用于滚动轴承待测样本的故障诊断。滚动轴承故障诊断实例验证了所提出的方法的有效性。  相似文献   

15.
Change of working condition leads to discrepancy in domain distribution of equipment vibration signals. This discrepancy poses an obstacle to application of deep learning method in fault diagnosis of wind turbine. When lacking domain adaptation ability, diagnostic accuracy of deep learning method applied to unseen condition will decrease significantly. To solve this problem, an iterative matching network augmented with selective sample reuse strategy is proposed. By generating pseudo labels for unlabeled signals from unseen condition and reusing these signals to iteratively update parameters, embedding space of matching network reduce discrepancy in domain distribution between different working conditions. This makes the model more adaptable to unseen condition. Specially designed filter is proposed for selecting pseudo-labeled signals to increase proportion of correctly labeled signals in iteration. By combing these two points, proposed algorithm can be updated iteratively based on selected pseudo-labeled signals and achieve higher accuracy when analyzing signals of unseen working conditions. Multiscale feature extractor is used to extract features at different scales and form embedding space. Effectiveness of the proposed algorithm is verified by four datasets. Experiments show that this algorithm not only has good performance under varying load and speed conditions but also surpasses other domain adaptation methods.  相似文献   

16.
Dealing with nonstationary processes requires quick adaptation while at the same time avoiding catastrophic forgetting. A neural learning technique that satisfies these requirements, without sacrificing the benefits of distributed representations, is presented. It relies on a formalization of the problem as the minimization of the error over the previously learned input-output patterns, subject to the constraint of perfect encoding of the new pattern. Then this constrained optimization problem is transformed into an unconstrained one with hidden-unit activations as variables. This new formulation leads to an algorithm for solving the problem, which we call learning with minimal degradation (LMD). Some experimental comparisons of the performance of LMD with backpropagation are provided which, besides showing the advantages of using LMD, reveal the dependence of forgetting on the learning rate in backpropagation. We also explain why overtraining affects forgetting and fault tolerance, which are seen as related problems.  相似文献   

17.
基于深度在线迁移的变负载下滚动轴承故障诊断方法   总被引:1,自引:0,他引:1  
针对变负载条件下滚动轴承源域与目标域中相同状态的数据特征分布差异性较大,目标域数据按照序列方式在线获取时,数据更新需重新训练模型的问题,提出一种深度在线迁移的CNN-ISVM(convolutional neural networks-incremental support vector machine)变负载下滚动轴...  相似文献   

18.
李志恒 《计算机应用研究》2021,38(2):591-594,599
针对机器学习中训练样本和测试样本概率分布不一致的问题,提出了一种基于dropout正则化的半监督域自适应方法来实现将神经网络的特征表示从标签丰富的源域转移到无标签的目标域。此方法从半监督学习的角度出发,在源域数据中添加少量带标签的目标域数据,使得神经网络在学习到源域数据特征分布的同时也能学习到目标域数据的特征分布。由于有了先验知识的指导,即使没有丰富的标签信息,神经网络依然可以很好地拟合目标域数据。实验结果表明,此算法在几种典型的数字数据集SVHN、MNIST和USPS的域自适应任务上的性能优于现有的其他算法,并且在涵盖广泛自然类别的真实数据集CIFAR-10和STL-10的域自适应任务上有较好的鲁棒性。  相似文献   

19.
轴承故障诊断在实际工业场景中意义重大。基于信号处理方法和机器学习方法,往往非常依赖先验知识,难以保证特征提取的有效性,深度学习方法要求训练集和测试集满足同一分布,这在工业现场难以满足,使得模型性能大幅下降。提出一种基于多层领域自适应的故障诊断方法,能够实现多种类、多尺寸的轴承故障诊断。首先,采用预训练好的ResNet18(Residual Network)作为特征提取器,并对每个残差块提取的特征计算MK-MMD(Multiple Kernel-Maximum Mean Discrepancy)距离,通过同时匹配高层和低层特征以有效匹配边缘分布差异。其次,每个残差块提取的特征都进入与之匹配的分类器中,通过Softmax层计算的预测概率分布,并转化为伪标签,缩小条件分布差异。最后,引入Adam优化器,对整体模型参数进行优化,加快模型训练,提高模型收敛速度。实验结果表明,所提出的方法能够有效提取可迁移特征,在负载变化的场景下达到了较高的诊断精度,并具有一定的泛化能力。  相似文献   

20.
以支持向量机(SVM)为代表的人工智能技术在智能传感器系统中得到了广泛的应用,但传统的SVM有"灾难性遗忘"现象,即会遗忘以前学过的知识,并且不能增量学习新的数据,这已无法满足智能传感器系统实时性的要求。而Learn++算法能够增量地学习新来的数据,即使新来数据属于新的类,也不会遗忘已经学习到的旧知识。为了解决上述问题,提出了一种基于壳向量算法的Learn++集成方法。实验结果表明:该算法不但具有增量学习的能力,而且在保证分类精度的同时,提高了训练速度,减小了存储规模,可以满足当下智能传感器系统在线学习的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号