首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahedrally bonded amorphous carbon (ta-C) and nitrogen doped (ta-C:N) films were obtained at room temperature in a filtered cathodic vacuum arc (FCVA) system incorporating an off-plane double bend (S-bend) magnetic filter. The influence of the negative bias voltage applied to substrates (from −20 to −350 V) and the nitrogen background pressure (up to 10−3 Torr) on film properties was studied by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and X-ray reflectivity (XRR). The ta-C films showed sp3 fractions between 84% and 88%, and mass densities around 3.2 g/cm3 in the wide range of bias voltage studied. In contrast, the compressive stress showed a maximum value of 11 GPa for bias voltages around −90 V, whereas for lower and higher bias voltages the stress decreased to 6 GPa. As for the ta-C:N films grown at bias voltages below −200 V and with N contents up to 7%, it has been found that the N atoms were preferentially sp3 bonded to the carbon network with a reduction in stress below 8 GPa. Further increase in bias voltage or N content increased the sp2 fraction, leading to a reduction in film density to 2.7 g/cm3.  相似文献   

2.
The high hardness, exceptional high temperature stability, and oxidation resistance of bulk Si–B–C–N ceramics have led to the expectation that these materials will be good candidates for superior coating materials in high-temperature applications. In this study, SiBCN films were prepared using ion beam assisted sputter (IBAS) deposition, and the mechanical properties and thermal stabilities of the films at 600, 700, and 800 °C in air were investigated. In particular, the effects of the ion beam assist on the properties of the SiBCN films were examined. The SiBCN films were deposited on Si plates by sputtering a target composed of Si + BN + C using a 2-keV Ar+ ion beam. A low-energy N2+ and Ar+ mixed ion beam irradiated the samples during the sputter deposition. The Si content in the SiBCN films was controlled by changing the Si/(BN + C) ratio of the target. BCN films were also deposited for comparison. The composition and chemical bonding structure of the prepared films were investigated by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. We found that c-BN bonds were formed in the ion-assisted BCN film. The oxide layer thickness on the SiBCN films after thermal annealing decreased due to the IBAS deposition and an increase in the Si content. Ion-assisted SiBCN films annealed at 800 °C showed the highest hardness of 20 GPa.  相似文献   

3.
The effect of nitrogen doping on the mechanical and electrical performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to 1 μm in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness and electrical resistance of the coatings decreased from 65 ± 4.8 GPa (3 kΩ/square) to 25 ± 2.4 GPa (10 Ω/square) with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the sp2 phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics.  相似文献   

4.
Nitrogenated carbon films were deposited on various substrates using filtered cathodic arc. Non-uniformity of the film thickness was less than 5% over a 15 cm diameter area. Mechanical, optical (refraction index, extinction coefficient versus wavelength) and electrical properties were investigated as a function of nitrogen flow rate. Deposited coatings demonstrated high hardness of 40–65 GPa, Young's modulus 200–285 GPa, excellent elastic recovery, high critical pressure for scratch formation, and surface smoothness. While the hardness showed a relatively small decrease with nitrogen flow increase, the stress decrease was more significant (8–3.8 GPa). Extremely low wear rates were observed, even at high contact pressures, and no substantial debris was detected indicating that carbon is oxidized during wear. Clear correlation was found between transparency, electrical resistivity and stress of the films. Transparency and resistivity showed a significant rise with an increase of stress. An explanation of the film properties is based on the assumption that the basic characteristics of the deposited films were determined by the relative proportion of two three dimensional complementary type of bonds; the tetrahedral sp3 bonds leading to stiff networks, and the trigonal sp2 arrangments close to fullerene-like, or nanotube-like, structures.  相似文献   

5.
Synthesis of undoped and doped tetrahedral amorphous carbon (ta-C) films has been achieved using magnetic field filtered plasma stream system in an ambient gas of pure Ar and Ar with N2, respectively. The optical and electrical properties of these films as a function of the substrate bias voltages (Vb) or nitrogen partial pressures (PN) have been studied using UV-visible optical absorption spectroscopy, Fourier-transform infra-red spectroscopy (FTIR) and measurements of electrical conductivity. The results show that ta-C films with a high sp3 fraction were formed when the Vb was in the range of −10 to −50 V. The optical band gap of such ta-C films was found to be larger than 3 eV. The incorporation of nitrogen into the ta-C films deposited at low PN (PN<25%), results in a slight drop in activation energy, which indicates that there is evidently some doping effect of nitrogen. The configurations of N atoms in ta-C network are identified and discussed.  相似文献   

6.
The intrinsic stress, film density and nitrogen content of carbon nitride (CNx) films deposited from a filtered cathodic vacuum arc were determined as a function of substrate bias, substrate temperature and nitrogen process pressure. Contour plots of the measurements show the deposition conditions required to produce the main structural forms of CNx including N-doped tetrahedral amorphous carbon (ta-C:N) and a variety of nitrogen containing graphitic carbons. The film with maximum nitrogen content (~ 30%) was deposited at room temperature with 1.0 mTorr N2 pressure and using an intermediate bias of − 400 V. Higher nitrogen pressure, higher bias and/or higher temperature promoted layering with substitutional nitrogen bonded into graphite-like sheets. As the deposition temperature exceeded 500 °C, the nitrogen content diminished regardless of nitrogen pressure, showing the meta-stability of the carbon–nitrogen bonding in the films. Hardness and ductility measurements revealed a diverse range of mechanical properties in the films, varying from hard ta-C:N (~ 50 GPa) to softer and highly ductile CNx which contained tangled graphite-like sheets. Through-film current–voltage characteristics showed that the conductance of the carbon nitride films increased with nitrogen content and substrate bias, consistent with the transition to more graphite-like films.  相似文献   

7.
In model of the subsurface non-local thermoelastic peak (NTP) the analytical expression for the intrinsic compressive stress arising in thin coating at ion beam deposition or ion-assisted deposition is obtained. Energy dependence of compressive stress in tetrahedral amorphous carbon (ta-C) coating at C+ ions deposition compares with experimental data at substrate temperature 300 K and activation energy of interstitial migration. Total temperature and pressure in the NTP of C+ ion in ta-C matrix and its position on phase P,T-diagram of carbon depending on ion energy and substrate temperature are determined. The substrate temperature at which transition from sp3-bounded to sp2-bounded structure formation occurs is calculated depending on the ion energy. The calculation results are compared with experimental data.  相似文献   

8.
The nanoindentation-induced deformation behaviour of a ta-C (tetrahedral amorphous carbon) coating deposited on to a silicon substrate by a filtered vacuum cathodic vapour arc technique was investigated. The 0.17-μm-thick ta-C coating was subjected to nanoindentation with a spherical indenter and the residual indents were examined by cross-sectional transmission electron microscopy. The hard (~ 30 GPa) ta-C coatings exhibited very little localized plastic compression, unlike the softer amorphous carbon coatings deposited by plasma-assisted chemical vapour deposition. However, neither through-thickness cracks nor delamination was observed in the coating for the loads studied. Rather, the silicon substrate exhibited plastic deformation for indentation loads as low as 10 mN and at higher loads it showed evidence of both phase transformation and cracking. These microstructural features were correlated to the observed discontinuities in the load-displacement curves. Further, it was observed that even a very thin coating can modify the primary deformation mechanism from phase transformation in uncoated Si to predominantly plastic deformation in the underlying substrate.  相似文献   

9.
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 × 1016 cm 2. Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp2-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 × 1015 cm 2. This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment.  相似文献   

10.
Pulsed laser ablation of a graphite target was carried out by ArF excimer laser deposition at a laser wavelength of 193 nm and fluences of 10 and 20 J/cm2 to produce diamond-like carbon (DLC) films. DLC films were deposited on silicon and quartz substrates under 1 × 10? 6 Torr pressure at different temperatures from room temperature to 250 °C. The effect of temperature on the electrical and optical properties of the DLC films was studied. Laser Raman Spectroscopy (LRS) showed that the DLC band showed a slight increase to higher frequency with increasing film deposition temperature. Spectroscopic ellipsometry (SE) and ultraviolet–visible absorption spectroscopy showed that the optical band gap of the DLC films was 0.8–2 eV and decreased with increasing substrate temperature. These results were consistent with the electrical resistivity results, which gave values for the films in the range 1.0 × 104–2.8 × 105 Ω cm and which also decreased with deposition temperature. We conclude that at higher substrate deposition temperatures, DLC films show increasing graphitic characteristics yielding lower electrical resistivity and a smaller optical band gap.  相似文献   

11.
《Ceramics International》2016,42(3):4171-4175
Boron nitride (BN) films are prepared by dual-ion beam sputtering deposition at room temperature (~25 °C). An assisting argon/nitrogen ion beam (ion energy Ei=0–300 eV) directly bombards the substrate surface to modify the properties of the BN films. The effects of assisting ion beam energy on the characteristics of BN films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectra, atomic force microscopy, and optical transmittance. The density of the B–N bond in the film increased with the increase in assisting ion beam energy. The highest transmittance of more than 95% in the visible region was obtained under the assisting ion beam energy of 300 eV. The band gap of BN films increased from 5.54 eV to 6.13 eV when the assisted ion-beam energy increased from 0 eV to 300 eV.  相似文献   

12.
Boronated tetrahedral amorphous carbon (ta-C:B) films were prepared by filtered cathodic vacuum arc technique using boron mixed graphite targets. The effect of boron content on the chemical bonding and vibrational properties of these films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. It has been found that boron atoms are predominantly configured in a graphitic network, while the carbon atoms in the ta-C:B films are mainly in sp3 hybridization which tend to decrease as boron content increases. The Raman and infrared spectra of ta-C:B films both show prominent features in the regions of 1100–1900 cm 1 and 900–1600 cm 1 respectively. It was identified that the Raman parameters are strongly correlated with the boron content which is due to the clustering of sp2 domains induced by B introduction. The activation of infrared spectrum of ta-C:B film is a consequence of heteroatomic (C–B) vibration combined with changes in the sp2 carbon configuration. And the enhanced infrared absorption of ta-C:B with increased boron incorporation results from the increased effective charges in the delocalized sp2 carbon phase.  相似文献   

13.
We systematically investigated the effect of the rf induced negative substrate bias voltage, Ub, on characteristics of novel quaternary Si–B–C–N films. The films were deposited on Si(100) or glass substrates by reactive dc magnetron co-sputtering of silicon, boron and carbon from a single C–Si–B or B4C–Si target in nitrogen–argon gas mixtures at substrate temperatures of 180–350 °C. Elemental compositions of the films, their surface bonding structure, and mechanical and electrical properties were primarily controlled by the Ub values, varied from a floating potential (being between − 30 and − 40 V) to Ub =  700 V. The energy and flux of ions bombarding the target and the growing films were evaluated on the basis of the measured discharge characteristics. The films were found to be amorphous with thickness up to 5 μm and density around 2.4 g/cm3. They exhibited hardness up to 44 GPa, modified Young's modulus between 170 and 280 GPa, elastic recovery up to 82% and good adhesion to substrates at a low compressive stress (0.6–1.8 GPa). The results of stress measurements were compared with predictions of the model developed by Davis and a beneficial role of silicon in reducing the compressive stress in the films was proved. Electrical conductivity of the semiconductive Si–B–C–N films with a high (approximately 40 at.%) carbon content was controlled by the nitrogen–argon gas mixture composition and the Ub values.  相似文献   

14.
The effect of surface plasma treatment on the nature of the electrical contact to the nitrogen incorporated nanocrystalline diamond (n-NCD) films is reported. Nitrogen incorporated NCD films were grown in a microwave plasma enhanced chemical vapor deposition (MPECVD) reactor using CH4 (1%)/N2 (20%)/Ar (79%) gas chemistry. Raman spectra of the films showed features at ∼ 1140 cm 1, 1350 cm 1(D-band) and 1560 cm 1(G-band) respectively with changes in the bonding configuration of G-band after the plasma treatment. Electrical contacts to both untreated and surface plasma treated films are formed by sputtering and patterning Ti/Au metal electrodes. Ohmic nature of these contacts on the untreated films has changed to non-ohmic type after the hydrogen plasma treatment. The linear current–voltage characteristics could not be obtained even after annealing the contacts. The nature of the electrical contacts to these films depends on the surface conditions and the presence of defects and sp2 carbon.  相似文献   

15.
The nitrogen incorporated nanocrystalline diamond (NCD) films were grown on n-silicon (100) substrates by microwave plasma enhanced chemical vapor deposition (MPECVD) using CH4/Ar/N2 gas chemistry. The effect of surface passivation on the properties of NCD films was investigated by hydrogen and nitrogen-plasma treatments. The crystallinity of the NCD films reduced due to the damage induced by the plasma treatments. From the crystallographic data, it was observed that the intensity of (111) peak of the diamond lattice reduced after the films were exposed to the nitrogen plasma. From Raman spectra, it was observed that the relative intensity of the features associated with the transpolyacetylene (TPA) states decreased after hydrogen-plasma treatment, while such change was not observed after nitrogen-plasma treatment. The hydrogen-plasma treatment has reduced the sp2/sp3 ratio due to preferential etching of the graphitic carbon, while this ratio remained same in both as-grown and nitrogen-plasma treated films. The electrical contacts of the as-grown films changed from ohmic to near Schottky after the plasma treatment. The electrical conductivity reduced from ~ 84 ohm 1 cm 1 (as-grown) to ~ 10 ohm 1 cm 1 after hydrogen-plasma treatment, while the change in the conductivity was insignificant after nitrogen-plasma treatment.  相似文献   

16.
We studied ion beam assisted deposition of cubic boron nitride thin films on silicon (100) and high speed steel. The boron nitride films were grown by the electron beam evaporation of pure boron (99.4%) and the simultaneous ion bombardment of a mixture of nitrogen and argon ions from a Kaufman ion source. At a constant boron evaporation rate, the ion energy, ion current density, substrate temperature and process gas mixture was varied. The thickness of the films was kept between 200 and 300 nm. Boron nitride films with >80% of the cubic phase (determined by Fourier transform infrared spectroscopy) were obtained with nitrogen/argon mixtures of 50/50 at ion energies of 450 eV and substrate temperatures of 400°C. The current density amounted to 0.45 mA cm−2 at a nominal boron rate of 200 pm s−1. Cubic boron nitride films were deposited on high speed steel by introducing a titanium interlayer for adhesion improvement.  相似文献   

17.
《Ceramics International》2017,43(15):11992-11997
Residual stress in thin films and coatings strongly affects their properties and behavior in service. Comprehensive understanding and precise measurements of residual stress are prerequisites for preparing high quality films and coatings. Residual stresses in TiN films with different thickness were measured by X-ray diffraction (XRD) employing the cos2α sin2ψ method with certain optimization. Grazing incidence parallel beam optics was combined with side-inclination geometry using in-house designed sample stage to ensure results accuracy. To validate this method, TiN films with thickness ranging from 1 to 3 µm were deposited on (100) Si single crystal substrates at 300 °C by RF magnetron sputtering. High compressive −2 GPa residual stress was present in the 0.9 µm thick film and decreased with film thickness. Tensile stress of less than 0.3 GPa was present in 2 µm TiN film. Compressive-to-tensile residual stress transition was observed with the film thickness increase. Microstructure change with growth, annihilation of grain boudaries, atomic peening and recovery mechanisms are responsible for the reported stress sign transition.  相似文献   

18.
Woodcutting tools with hardmetal (WC–Co) tool tips were coated with a high-quality (80% sp3 bonding fraction) tetrahedral amorphous carbon (ta-C) film. The coatings were produced by filtered cathodic vacuum-arc (FCVA) deposition. The problem with poor adhesion between the ta-C film and cobalt was solved by using an intermediate chromium layer structure. The adhesion was tested with a conventional scratch tester. In the case of a 1.2 μm thick ta-C film with intermediate layer structure the critical load value was 31.6 N; without the intermediate layer it was 16.2 N. The lifetime of the ta-C-coated woodcutting tool was tested under normal production conditions with a computer numerical control (CNC) woodcutting machine. The lifetime of the woodcutting tool tip improved by a factor of three in the case of a 2.1 μm thick multilayer (ta-C/Cr) film coating and by a factor of 1.5 in the case of a 1.0 μm thick ta-C film coating with an 0.5 μm thick intermediate chromium layer.  相似文献   

19.
Cu(In1?xGax)Se2 (CIGS) thin films were prepared using a single quaternary target by RF magnetron sputtering. The effects of deposition parameters on the structural, compositional and electrical properties of the films were examined in order to develop the deposition process without post-deposition selenization. From X-ray diffraction analysis, as the substrate temperature and Ar pressure increased and RF power decreased, the crystallinity of the films improved. The scanning electron microscopy revealed that the grains became uniform and circular shape with columnar structure with increasing the substrate temperature and Ar pressure, and decreasing the RF power. The carrier concentration of CIGS films deposited at the substrate temperature of 500 °C was 2.1 × 1017 cm?3 and the resistivity was 27 Ω cm. At the substrate temperature above 500 °C, In and Se contents in CIGS films decreased due to the evaporation and it led to the deterioration of crystallinity. It was confirmed that CIGS thin films deposited at optimal condition had similar atomic ratio to the target value even without post-deposition selenization process.  相似文献   

20.
We investigated the mechanical and tribological properties of hydrogenated amorphous carbon (a-C:H) films on silicon substrates by nanoindentation, ball-on-disc tribotesting and scratch testing. The a-C:H films were deposited from an argon/methane gas mixture by bias-enhanced electron cyclotron resonance chemical vapour deposition (ECR-CVD). We found that substrate biasing directly influences the hardness, friction and wear resistance of the a-C:H films. An abrupt change in these properties is observed at a substrate bias of about ?100 V, which is attributed to the bias-controlled transition from polymer- to fullerenelike carbon coatings. Friction coefficients in the range of 0.28–0.39 and wear rates of about 7 × 10?5 mm3/Nm are derived for the polymeric films when tested against WC–Co balls at atmospheric test conditions. On the other hand, the fullerenelike hydrogenated carbon films produced at ion energies > 100 eV display a nanohardness of about 17 GPa, a strong reduction in the friction coefficient (~ 0.10) and a severe increase in the wear resistance (~ 1 × 10?7 mm3/Nm). For these films, relative humidity has a detrimental effect on friction but no correlation with the wear rate was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号