首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Ceramics International》2023,49(12):20406-20418
Herein, we present the structural evolution of polymer-derived SiOC ceramics with the pyrolysis temperature and the corresponding change in their microwave dielectric properties. The structure of the SiOC ceramics pyrolyzed at a temperature lower than 1200 °C is amorphous, and the corresponding microwave complex permittivity is pretty low; thus, the ceramics exhibit wave transmission properties. The Structural arrangement of free carbon in the SiOC ceramics mainly happens in the temperature range of 1200 °C-1300 °C due to the separation from the Si–O–C network and graphitization, while the structural arrangement of the Si-based matrix mainly occurs in the range of 1300 °C-1400 °C owing to the separation of SiC4 from the Si–O–C network to form nanocrystalline SiC. In pyrolysis temperature range of 1200 °C-1400 °C, the microwave permittivity of SiOC shows negligible change. At a pyrolysis temperature exceeding 1400 °C, the carbothermal reaction of free carbon and the Si–O backbone becomes significant, leading to the formation of crystalline SiC. The as-formed SiC and residual defective carbon improve the polarization loss of SiOC ceramics. In this case, the SiOC ceramics show significantly increased complex permittivity, exhibiting electromagnetic absorption characteristics. These characteristics promote the application of polymer-derived SiOC ceramics to high-temperature electromagnetic absorption materials.  相似文献   

2.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

3.
Densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) ceramics modified with a complex Zr/Si/O-based additive were studied. ZrB2 ceramics with 5–20 vol.% additions of Zr/Si/O-based additive were densified to >95% relative density at temperatures as low as 1400°C by hot-pressing. Improved densification behavior of ZrB2 was observed with increasing additive content. The most effective additive amount for densification was 20 vol.%, hot-pressed at 1400°C (∼98% relative density). Microstructural analysis revealed up to 7 vol.% of residual second phases in the final ceramics. Improved densification behavior was attributed to ductility of the silicide phase, liquid phase formation at the hot-pressing temperatures, silicon wetting of ZrB2 particles, and reactions of surface oxides. Room temperature strength ranged from 390 to 750 MPa and elastic modulus ranged from 440 to 490 GPa. Vickers hardness ranged from 15 to 16 GPa, and indentation fracture toughness was between 4.0 and 4.3 MPa·m1/2. The most effective additive amount was 7.5 vol.%, which resulted in high relative density after hot-pressing at 1600°C and the best combination of mechanical properties.  相似文献   

4.
《Ceramics International》2020,46(14):22102-22107
Multiphase ceramics like ZrC/SiC are promising candidates as ultra-high temperature ceramics for applications in extreme environments. In this work, non-oxide precursors for ZrC/SiC and HfC/SiC composite ceramics were synthesized by a one-pot reaction of three components – metal source, silicon source, and activating reagent. Molecular structures of the precursors were identified by 1H NMR and FTIR. Transformation process of the precursors to the ZrC/SiC ceramics was investigated via XRD and SEM. After heat-treatment at 1600 °C under argon, the obtained ZrC/SiC and HfC/SiC ceramics features a particle size of 100–200 nm and high metal content without excess carbon. The elemental composition of pyrolyzed ceramics can be tuned by varying the ratio of the reagents in the synthesis of precursors. This strategy also inspires a facile fabrication of composite ceramics with other elemental compositions.  相似文献   

5.
The thermal behaviour of a series of poly[B-(methylamino)borazine] prepared at various temperatures ranging from 140 to 200 °C is studied in the present paper as potential BN fiber precursors. It was shown that the softening capability of poly[B-(methylamino)borazine] can be tailored by controlling the temperature at which polymers were prepared to achieve melt-spinning and produce high quality green fibers. Thus as-spun fibers could be next converted into boron nitride fibers using ammonia (25–1000 °C) and nitrogen (25–1800 °C) atmospheres. The quality of boron nitride fibers was shown to depend on the first part of the pyrolysis step (25 and 1000 °C; ammonia atmosphere) in which the great majority of the weight loss necessary for boron nitride production occurs. Ideal poly[B-(methylamino)borazine] as BN fiber precursors are those prepared between 170 and 180 °C. They display appropriate melt-spinnability and ceramic conversion capability.  相似文献   

6.
Tris(dichloromethylsilylethyl)borane is a compound containing a B–C bond and Cl and H elements. Herein, we propose a novel method to synthesize polyborosilazanes using tris(dichloromethylsilylethyl)borane and boron trichlorosilane as boron sources and hexamethyldisilazane as a nitrogen source. The microstructure and chemical composition of the as-synthesized polyborosilazanes and as-annealed SiBCN ceramics were investigated using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, Raman spectroscopy, scanning electron microscope, and transmission electron microscope methods. The organic precursors were converted entirely into inorganic ceramics at 800 °C, and the ceramic yield of the polyborosilazanes was 88% at 1000 °C. SiBCN ceramics with irregular shapes contained chemical bonds of B–N, Si–N, and Si–C at 1500 °C and retained an amorphous structure below 1600 °C. After the first cycle, the fabricated SiBCN ceramic anodes exhibited a reversible capacity of 261.3 mA h/g, which was 2.6 times that reported in the literature (101 mA h/g). The discharge capacity decreased to 157.6 mA h/g after 30 cycles. The satisfactory electrochemical performance of the resulting SiBCN ceramic anodes can be attributed to the formation of conductive carbon species favoring the transport properties of lithium ion.  相似文献   

7.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

8.
Boron nitride (BN) ceramics are promising candidates for high-temperature structural and functional materials. However, it is difficult to sinter dense additive-free bulk BN monoliths because of the covalent bond and flake structure. Here, we report dense bulk BN with relative density higher than 95% without sintering additives achieved via a self-densifying approach of borazine within a wide temperature range from 800 °C to 1800 °C. A polyborazylene with a controlled degree of cross-linking was synthesized and press-molded into shaped green bodies, which were pressureless pyrolyzed into porous frameworks and then densified through repeated borazine infiltration and pyrolysis method. The microstructural and crystalline evolution of the bulk BN ceramics, as well as the corresponded mechanical, thermal and dielectric properties were investigated.  相似文献   

9.
《Ceramics International》2023,49(12):20298-20303
The development of optoelectronic devices depends on the development of optoelectronic materials such as transparent ceramics. LiF transparent ceramics are photoelectronic ceramics with excellent photoelectric properties. Still, the traditional preparation of LiF transparent ceramics generally needs a high temperature or high-pressure environment, and the cost is high. This paper adopts a cold sintering process to prepare high-density LiF transparent ceramics at low temperatures to reduce the preparation conditions. The effects of different cold sintering temperatures on microstructure, density, hardness, visible and near-infrared transmittance, and electrical properties of transparent ceramics were studied. The results show that using LiOH solution as the solvent, the relative density of LiF ceramics can reach up to 99.64% under the sintering condition of 375 °C/470 MPa, and the Vickers hardness is 1.34 GPa. Vickers hardness is 1.34 GPa. The transmittance in the visible and near-infrared regions is 60.45% and 85.31%, respectively. The dielectric constant and dielectric loss of 13 GHz are 4.36 and 1.11 × 10−3, respectively.  相似文献   

10.
Composites of ZrC–SiC with relative densities in excess of 98% were prepared by reactive hot pressing of ZrC and Si at temperature as low as 1600°C. The reaction between ZrC and Si resulted in the formation of ZrC1?x, SiC, and ZrSi. Low‐temperature densification of ZrC?SiC ceramics is attributed to the formed nonstoichiometric ZrC1?x and Zr–Si liquid phase. Adding 5 wt% Si to ZrC, the three‐point bending strength of formed ZrC0.8–13.4 vol%SiC ceramics reached 819 ± 102 MPa with hardness and toughness being 20.5 GPa and 3.3 MPa·m1/2, respectively.  相似文献   

11.
Bonding evolution of amorphous carbon incorporated with Si or a-C(Si) in a thermal process has not been studied. Unhydrogenated a-C(Si) films were deposited by magnetron sputtering to undergo two different thermal processes: i) sputter deposition at substrate temperatures from 100 to 500 °C; ii) room temperature deposition followed by annealing at 200 to 1000 °C. The hardness of the films deposited at high temperature exhibits a monotonic decrease whereas the films deposited at room temperature maintained their hardness until 600 °C. X-ray photoelectron spectroscopy and Raman spectroscopy were used to analyze the composition and bonding structures. It was established that the change in the mechanical property is closely related to the atomic bonding structures, their relative fractions and the evolution (conversion from C–C sp3  CC sp2 or CC sp2  C–Si sp3) as well as clustering of sp2 structures.  相似文献   

12.
Precursors for Zr/Si/C multiphase ceramics were synthesized by the reactions of dilithiozirconocene complex with dichlorodimethylsilane, methyltrichlorosilane and dichloromethylvinylsilane, respectively. The precursor-to-ceramic process of the precursor was investigated by TG-GC–MS and TG-FTIR analyses, confirming a complete transformation from organometallic polymers into ceramics below 800 °C. Annealing experiments of the derived ceramics at temperatures from 1000 °C to 2000 °C indicated the crystallization from ZrSiO4, ZrO2 to ZrC. Furthermore, micrometer-sized Zr/Si/C ceramic microspheres were successfully fabricated from the precursor at 1000 °C, showing surface morphology like wrinkled pea. According to the XRD, HRTEM and XPS analyses, such multiphase ceramic microspheres consist of ZrSiO4, ZrO2, and amorphous SiOxCy. Interestingly, the ceramic microspheres performed satisfactory electromagnetic wave absorbing capacity with the RLmax reaching −34 dB, which could be potential candidates for electromagnetic micro-devices.  相似文献   

13.
The sintering process of zirconia ceramics at high pressures is very different from that under normal pressure. In this paper, 10 mol% MgO partially-stabilized zirconia ceramics (Mg-PSZ) were synthesized under a pressure of 2.5 GPa at temperatures ranging from 1370 to 1610 °C. The effect of sintering temperature on the phase transformation behavior and hardness changes of Mg-PSZ were studied by X-ray diffraction, scanning electron microscopy, Raman spectrometry, and Vickers hardness tests. The optimal sintering conditions of 10 mol% Mg-PSZ were determined. At high pressures, the sintering time was shortened to 60 min, and the sintering temperature was reduced to 1530 °C, which indicates that the high pressure accelerated the sintering rate. Mg-PSZ reached a maximum Vickers hardness of 14.9 GPa at 1530 °C, but when the sintering temperature was further increased to 1610 °C, grain coarsening occurred, and the Vickers hardness decreased to 9.6 GPa.  相似文献   

14.
Structural evolution and crystallization behavior between 600°C and 1450°C during the preparation of bulk SiC/B4C/C nanocomposites by the pyrolysis of CB‐PSA preceramic were investigated. The CB‐PSA preceramic converts into carbon‐rich Si–B–C ceramics up to 800°C. Structural evolution and crystallization of Si–B–C materials could be controlled by adjusting the pyrolytic temperature. The Si–B–C ceramics are amorphous between 800°C and 1000°C. Phase separation and crystallization begin at 1100°C. The crystallization of β‐SiC takes place at 1100°C and B4C nanocrystallites generate at 1300°C. The sizes of β‐SiC and B4C nanocrystals increase with the pyrolytic temperature rising. In addition, the boron‐doping effect on structural evolution was studied by comparing the crystallization and graphitization behavior of Si–B–C ceramics and the corresponding Si–C materials. Boron is helpful for the growth of β‐SiC nanocrystals and the graphitization, but harmful for the nucleation of β‐SiC crystallites.  相似文献   

15.
Polyborosilazanes (PBSZs) were synthesized by co‐ammonolysis of 2,4,6‐trichloroborazine and dichloromethylsilane and used as precursors for Si? B? C? N ceramics. The pyrolyzed products were characterized with Fourier transform infrared, X‐ray photoeletron spectroscopy, thermogravimetric analysis (TGA), X‐ray diffraction, and scanning electron microscopy (SEM). The results indicated the content of B or Si plays an important role in controlling the high temperature behavior of the precursors. The resistance of the ceramics, which were obtained from pyrolysis of PBSZs at 1500°C, toward oxidative attack up to 1000°C was also investigated by TGA and SEM/EDX. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
This study reports the synthesis of three types of aluminium (Al)-modified polyborosilazane ceramic precursors (PBSAZ) from C8H19Al/HSiCl3/HMDZ/BCl3 and their thermal conversion to SiBNC-Al ceramics at 1000°C. FT-IR, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) are used to characterize the structures and properties of the PBSAZ. PBSAZ is found to be built up of the Si─N─B framework, with Al successfully introduced into the ceramic network structures. The ceramic yield is 63.5 wt.% for the Al-poor polymers (PBSAZ-5) and 65.1 wt.% for the Al-rich polymers (PBSAZ-1). The high-temperature cracking behavior and the crystal phase structures of the ceramics were characterized by XRD and Raman, which revealed that SiBNC-Al ceramics contained Si4N3, SiC, and AlN (+SiC) crystals after heat treatment at 1600°C. The oxidation behavior of SiBNC and SiBNC-Al ceramics at 1500°C shows that the introduction of Al improves the quality of the oxide layer, effectively suppresses the oxide layer cracking phenomenon, and reduces gas bubble generation.  相似文献   

17.
《Ceramics International》2023,49(5):7600-7612
Porous Si/C/O/(N) ceramic bodies were developed by the direct consolidation of novel liquid silicon-based preceramic polymer/porogen (methacryloxypropyl silsesquioxane/sucrose) systems, burnout, and N2 pyrolysis (1300–1500 °C), and they were characterized via open porosity, volumetric shrinkage, and mass loss measurements. The evolution of phases as temperature increased was analyzed using XRD, TGA-mass spectrometry tests, and 29Si NMR. The free carbon phase was characterized via Raman spectroscopy, and its content was determined using a carbon analyzer. Porous microstructures were analyzed by SEM/EDS and Hg-porosimetry, and by measuring the N2 adsorption/desorption and specific surface area. The final ceramics exhibited a hierarchical porosity composed of large irregular pores that grew with temperature, together with a lower volume of meso- and micropores. β-SiC whiskers and faceted hexagonal crystals of α-Si3N4 were observed inside of cavities. The presence of meso- and micropores explained the high specific surface area achieved in the material pyrolyzed at 1500 °C.  相似文献   

18.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

19.
《Ceramics International》2023,49(1):707-715
In this study, ZrC–SiC composite ceramics were prepared with varying Zr/Si molar ratios using sol–gel method. Composites were characterized by Fourier-transform infrared spectroscopy (FT–IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). FT–IR analysis confirmed macromolecular network structure of composites, in which the precursor is composed of polyvinyl butyral (PVB) as main chain, silane molecules are interlinked via –OH moieties in PVB side chains, and Zr atoms are crosslinked with Si in corresponding proportion. Ceramic precursor begins to decompose at a temperature exceeding 1300 °C and is completely transformed into ZrC–SiC composite ceramics with corresponding Zr/Si molar ratio at 1600 °C. Raman spectroscopy and TEM results reveal that after annealing at 1600 °C, ZrC powder uniformly covers surface of SiC ceramics, and high-crystallinity graphite carbon covers ZrC powder.  相似文献   

20.
The development of efficient and durable catalysts is critical for the commercialization of fuel cells, as the catalysts’ durability and reactivity dictate their ultimate lifetime and activity. In this work, amorphous silicon-based ceramics (Si–C–N and Si–Al–C–N) and TiN@Si–Al–C–N nanocomposites were developed using a precursor derived ceramics approach. In TiN@Si–Al–C–N nanocomposites, TiN nanocrystals (with sizes in the range of 5–12 nm) were effectively anchored on an amorphous Si–Al–C–N support. The nanocomposites were found to be mesoporous in nature and exhibited a surface area as high as 132 m2/g. The average pore size of the nanocomposites was found to increase with an increase in the pyrolysis temperature, and a subsequent graphitization of free carbon was observed as revealed from the Raman spectra. The ceramics were investigated for electrocatalytic activity toward the oxygen reduction reaction using the rotating disk electrode method. The TiN@Si–Al–C–N nanocomposites showed an onset potential of 0.7 V versus reversible hydrogen electrode for oxygen reduction, which seems to indicate a 4-electron pathway at the pyrolysis temperature of 1000°C in contrast to a 2-electron pathway exhibited by the nanocomposites pyrolyzed at 750°C via the Koutecky–Levich plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号