共查询到20条相似文献,搜索用时 15 毫秒
1.
The diamond-like carbon (DLC) multilayer films have been deposited by plasma CVD deposition onSi wafer substrate. The deposited films have then been post-annealed in vacuum at 250 °C for 2 h. Changes in internal stress, hardness, critical load, friction coefficient and wear have been investigated toassess the influence of annealing on mechanical and tribological properties of DLC multilayer films. At the same time, DLC single layerfilms are also deposited and annealed in the same method for a comparison.The results show that there is 28–33% decrease in internal stress and 10–13% decrease in hardness of theDLC single layer films after the anneal treatment. However, for the DLC multilayer films, there is 41–43% decreasein internal stress and less than 2% decrease in hardness. In addition, the annealed DLC multilayer filmhas the same friction and wear properties as that un-annealed film. This result indicates that the anneal treatment isan effective method for the DLC multilayer films to reduce the internal stress and to increase the critical load.The by-effect of the annealing, decrease of hardness and wear resistance of the multilayer film, can be restrictedby the multilayer structure. 相似文献
2.
TiN-Ti-DLC等多层复合膜的摩擦学性能研究 总被引:2,自引:0,他引:2
在一台УВНИПА 1型双激发源等离子弧薄膜沉积装置上制取TiN Ti DLC、及其含有软金属Cu或PTFE覆盖膜的多层复合涂层。摩擦磨损试验在一台球 盘滑动磨损试验机上进行。结果表明,以TiN和DLC膜为主体的多层复合涂层具有较高的摩擦学特性,过渡金属钛层、软金属和聚四氟乙烯覆盖层可以降低摩擦系数33%~50%,对磨擦表面磨损减少90%。 相似文献
3.
《Diamond and Related Materials》2001,10(9-10):1855-1861
Diamond-like carbon (DLC) films were prepared on AISI 440C steel substrates at room temperature by the electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma under different conditions. In order to prevent the inter-diffusion of carbon and improve the adhesion strength of DLC films, functionally gradient Ti/TiN/TiCN/TiC supporting underlayers were deposited on the steel substrates in advance. Using the designed interfacial transition layers, relatively thick DLC films (1–2 μm) were successfully prepared on the steel substrates without delamination. By optimizing the deposition parameters, DLC films with hardness up to 28 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball were obtained. In addition, the specific wear rates of the films were found to be extremely low (∼10−17 m3/Nm). The friction-induced graphitization mechanism of DLC was confirmed by micro-Raman analysis. 相似文献
4.
Internal stresses have been measured in diamond-like carbon (DLC) films deposited by d.c. plasma assisted chemical vapor deposition from methane, acetylene, or cyclohexane, and in nitrogen containing DLC films deposited from acetylene, or cyclohexane and nitrogen. The total hydrogen content in the films and the fraction of bound hydrogen have been analyzed by forward recoil elastic scattering and Fourier transform infrared spectroscopy respectively. It was found that in pure DLC films the stresses increase with increasing fraction of unbound hydrogen. The highest compressive stresses were obtained in the films deposited from methane and the lowest stresses in films deposited from cyclohexane. In the nitrogen containing DLC films the stresses decrease with increasing nitrogen content in the films. Stresses as low as 0.22 GPa were obtained in the films deposited from cyclohexane and nitrogen at a ratio of 1/15 in the plasma. 相似文献
5.
《Diamond and Related Materials》2007,16(8):1682-1687
In this paper the surface properties of silicon-doped diamond-like carbon films with various Si contents on 316 stainless steel substrate by a magnetron sputtering technique were investigated. X-ray photoelectron spectroscopy was applied to determine the surface chemical composition of the films. Atomic force microscopy was used for the determination of surface roughness and topography. The sp2 contents in the films were determined with Auger electron spectroscopy, which were 67.1%, 34.2% and 25.0% for silicon contents 1%, 2% and 3.8%. The sp3/sp2 ratio increases with increasing the silicon contents in the films. Contact angles of three test liquids on the films were obtained with a Dataphysics OCA-20 contact angle analyzer. Surface free energies of the films and their dispersive and polar components were calculated using van Oss acid–base approach. Staphylococcus aureus was used for bacterial adhesion test. The experimental results showed that bacterial adhesion decreased with increasing the silicon content or with increasing sp3/sp2 ratio in the films. 相似文献
6.
《Diamond and Related Materials》1999,8(2-5):567-571
The friction coefficients have been investigated in amorphous diamond-like carbon (DLC) films deposited by a dual ECR–r.f. method, as a function of r.f. substrate bias in relation with the H content and bonding. Combined infrared absorption, elastic recoil detection analysis and tribological tests are used to characterize fully the films in their as-deposited state. Friction coefficients (μ) of the coatings against sapphire balls are determined in air at room temperature. The results indicate clearly that the samples exhibit high compressive stresses and the friction coefficients are found to be low and are affected by the magnitude of the biaxial stress and the microstructure of the films. 相似文献
7.
《Diamond and Related Materials》2000,9(9-10):1762-1766
In this study, we developed a novel method of synthesizing metal-doped diamond-like carbon films (DLC) using the cathodic arc evaporation (CAE) process. Intense Cr plasma energy activated the decomposition of hydrocarbon source gas C2H2 to form a metal-doped amorphous carbon film on steel substrates. We deposited a Cr interlayer to prevent interdiffusion between DLC and the steel substrates. When the C2H2 partial pressure is higher than 1.3 Pa, the deposition reaction switched from Cr3C2 to DLC formation. The result is a hydrogenated DLC thin film possessing excellent microhardness as high as 3824 Hv(25g), and for which the incorporation of a Cr interface and Cr doping in the DLC matrix ensure film ductility and sufficient film adhesion. We employed Raman spectroscopy to evaluate the influences of reactive gas flow and substrate bias on the DLC composition; we carried out the microstructure and mechanical property measurements by scanning electron microscopy (SEM), X-ray diffraction (XRD), glow discharge optical spectroscopy (GDS) and wear tests. 相似文献
8.
液相沉积类金刚石膜的沉积机理研究 总被引:2,自引:0,他引:2
根据电化学的相关理论,提出了钛合金表面液相沉积DLC膜的反应机理,给出了可能电极过程,认为膜是通过甲基阳离子的亲电取代反应而不断生长。讨论了氢原子对金刚石结构的稳定作用,并解释了实验条件对膜结构和性能的影响。 相似文献
9.
探讨了液相沉积法制备类金刚石的新工艺,并采用XPS,Raman光谱和SEM等对所得膜的结构进行表征,证实所得的是类金刚石膜。液相沉积得到的类金刚石膜与钛合金基材之间具有较强的结合强度,并具有较低的摩擦系数和一定的耐磨损能力。 相似文献
10.
This study focuses upon the deposition of diamond-like carbon thin films for tribological applications. Carbon consists of mainly sp2 bonds, having a low Hardness and low coefficient of friction. By depositing carbon in a methane (CH4)-rich atmosphere, the energetics of the process favours the formation of diamond-like bonds, namely sp3. To improve the tribological properties of a multilayer system, a refractory metal ceramic TiB2, has been multilayered with carbon and deposited on titanium (Ti) substrates to a total thickness of 3 μm. A multilayer stack of 10 bi-layers has been deposited, and the volume fraction of carbon in the coating has been varied by changing the thickness of the individual layers. This study employs pulsed-dc sputtering combined with Ar 7.5% CH4 to deposit both carbon and TiB2.The Raman spectroscopy data shows that the carbon deposited was amorphous in nature with an ID / IG ratio of 1.25. TiB2 sputtered in Ar 7.5% CH4 formed Ti-B-C, containing both a hard TiB2 phase and a lubricating diamond-like carbon phase.Three volume fractions of carbon have been investigated: 25%, 50% and 75%. From nanoindentation studies, the Hardness varies from 5 to 3 GPa for the 75% and 25% carbon-containing coatings, respectively, measured at a penetration depth of approximately one-third of the coating. This increase in Hardness as a function of percentage of carbon has been attributed to the coatings forming load-bearing properties.From wear studies, friction coefficients of around 0.3 have been measured. Thus, these multi-layered TiB2/C coatings are both load bearing and lubricious. 相似文献
11.
H. Nakazawa A. Sudoh M. Suemitsu K. Yasui T. Itoh T. Endoh Y. Narita M. Mashita 《Diamond and Related Materials》2010,19(5-6):503-506
We have deposited boron- and/or nitrogen-incorporated DLC films by radio-frequency magnetron sputtering, and systematically investigated the structure and the mechanical and tribological properties. The N content in DLC films increased with increasing N2 flow ratio [N2/(Ar + N2)], and it tended to be saturated at higher N2 flow ratios. The N content further increased with an increase in the B content of the targets. The B/C ratios of the films were almost the same as those of the B-containing targets regardless of the N content. Scratch tests revealed that the adhesion strength of N-incorporated DLC films decreased with increasing N2 flow ratio and the critical loads of B-incorporated films were lower than that of an unincorporated film. It was found that for B, N-coincorporated films there was an optimum N2 flow ratio at which the critical load became a maximum value, which was higher than that of the unincorporated film. The optimum N2 flow ratio increased with an increase in the B composition of the targets. The N-incorporated films peeled off during ball-on-plate friction tests. On the other hand, the B, N-coincorporated films showed good wear-resistant properties that the specific wear rates were lower than those of the unincorporated and B-incorporated films. 相似文献
12.
This paper examines the challenge posed by the measurement of thickness of sub-50 nm diamond-like carbon (DLC) films deposited onto silicon substrates. We compared contact profilometry (CP), optical profilometry (OP), contact atomic force microscopy (CAFM), tapping atomic force microscopy (TAFM) and X-ray reflectometry (XRR). Generally, CP, CAFM, TAFM and XRR give similar thickness values except for the case of the more compliant samples measured by CP and CAFM. Moreover, the theoretically precise XRR technique gives significant standard deviation due to the layering of the DLC film. For those transparent samples, OP always gives an erroneous measurement. These metrological artefacts are compared to calculations of mechanical deformation (CP and CAFM), energy dissipation (TAFM) and thin film interferences (OP). The OP artefact is used to extract the film’s refractive index, in good agreement with literature values. Finally, the comparative data obtained in this study also shows that the density and refractive index of the 10 nm thick films are constituently lower than those of the 50 nm thick films. This scaling effect, which is consistent with known growth mechanisms for DLC, further complicates the measurement of thickness by optical techniques. 相似文献
13.
Amorphous diamond-like carbon (a:DLC) films have been doped by incorporation of iodine during the films deposition. XPS and AES analysis shows the existence of iodine atoms with constant concentration of 0.9% along the iodine doped DLC film (a:I-DLC). The optical and electronic properties of the doped films were studied. Optical measurements in the visible light show that iodine affects the interband absorption of the a:DLC films. Iodine causes decreasing of the optical energy gap, from 1.07 to 0.78 eV and affects the density of states at the conducting band. Like the optical measurements, electrical measurements show that iodine also decreases the activation energy of the films from 0.34 to 0.22 eV. This shows that although both gaps decrease, the optical energy gap remains different from that of electrical gap, also after doping. 相似文献
14.
Good-quality diamond-like carbon films (6 at.% H2, 2400 kgf/mm2 microhardness, 2.7 eV bandgap, higly insulating) have been obtained by the DC glow discharge decomposition of acetylene. Mass spectroscopic thermal effusion measurements were carried out on the films deposited under different deposition conditions. Analyses of hydrogen in conjunction with hydrocarbon effusing species yield information on the microstructure and nature of C---H bonding configurations. It is shown to be a useful analytical tool to study hydrogenated amorphous carbon films of different microstructures varying from polymer-like to diamond-like. 相似文献
15.
《Diamond and Related Materials》2001,10(8):1486-1490
The heat resistance of fluorinated diamond-like carbon (F-DLC) films produced by Plasma Immersion Ion Processing (PIIP) technique was investigated by annealing F-DLC coatings in a vacuum furnace. The growth rate for the F-DLC films was approximately 0.6 μm/h. In order to see the possible change in the composition and properties of the F-DLC films, Rutherford Backscattering Spectrometry (RBS), nanoindentation and contact angle measurements were performed before and after the heat treatments. The results show that the composition and properties of the F-DLC films were unchanged up to heat treatment at 300°C for up to 30 min. Blistering and film delamination occurred for samples treated at 400°C. 相似文献
16.
《Diamond and Related Materials》2007,16(3):623-629
Diamond-like hydrogenated carbon films have been formed at low temperatures using methane and acetylene as precursor gases. The source used was of a cascaded arc type employing Ar and Ar/H2 as carrier gases. Energies of ion species and ion densities in the plasma were measured with a mass energy probe and a Langmuir probe.The films produced were characterized in terms of sp3 content, refractive index, relative hydrogen content, hardness and adhesion. The variation of these parameters is presented as functions of precursor gas flow, process pressure, and surface temperature.Deposition rates up to 30 nm/s have been achieved using acetylene as precursor gas at substrate temperatures below 100 °C. Experiments with acetylene showed deposition rates seven times greater than with methane. The typical sp3 content of 55–78% in the films was determined by X-ray-Excited Auger Electron Spectroscopy (XAES) technique. The hardness and reduced modulus were determined by nanoindentation. Preliminary Atomic Force Microscopy (AFM) studies of the films showed a roughness below 3 nm (Ra). 相似文献
17.
《Diamond and Related Materials》2005,14(8):1270-1276
A recently suggested method to measure the elastic modulus of diamond-like carbon (DLC) films was reviewed. This method used a DLC bridge or free overhang which is free from the mechanical constraint of the substrate. Because of the high residual compressive stress of the DLC film, the bridge or the overhang exhibited a sinusoidal displacement on removing the mechanical constraint. Measuring the amplitude and wavelength of the sinusoidal displacement made it possible to measure the strain of the film which occurred by stress relaxation. Combined with independent stress measurement using the laser reflection method, this method allowed the calculation of the biaxial elastic modulus of the DLC film. This method was successfully applied to obtain the elastic properties of various DLC films from polymeric hydrogenated amorphous carbon (a-C:H) to hard tetrahedral amorphous carbon (ta-C) films. Since the substrate is completely removed from the measurement system, this method is insensitive to the mechanical properties of substrate. The mechanical properties of very thin DLC films could be thus measured and then can reveal the structural evolution of a-C:H films during the initial stages of deposition. 相似文献
18.
《Diamond and Related Materials》2007,16(2):334-341
We have produced hydrogen-free diamond-like carbon (DLC) films by vacuum arc deposition for use as wall coating material in ultracold neutron (UCN) applications. The sp3 fraction, the main quality factor for DLC used in UCN applications, was varied from 0.4 to 0.9, the coating thickness between 10 nm and 120 nm. The samples were characterized by using X-ray Absorption Near-Edge Spectroscopy (XANES), X-ray induced Photoelectron Spectroscopy (XPS), Laser induced surface Acoustic Waves (LAwave), cold neutron reflectometry and Raman spectroscopy at visible excitation wavelength. We observe reasonable agreement between the different results for film thicknesses below 20 nm. For larger thickness, we find that the surface-sensitive methods XPS and XANES yield smaller sp3 fractions (by up to 20%) than the bulk-sensitive LAwave, being consistent with the assumption of a lower-density surface layer on a nominal-density bulk layer. 相似文献
19.
F.R. Marciano L.F. Bonetti D.A. Lima-Oliveira C.B. Mello M. Ueda E.J. Corat V.J. Trava-Airoldi 《Diamond and Related Materials》2010,19(10):1139-1143
The purpose of this paper is to show the production and characterization of diamond-like carbon (DLC) films with incorporated crystalline diamond (CD), produced by plasma enhanced chemical vapor deposition. CD-DLC films were characterized by scanning electron microscopy, X-ray diffraction, atomic force microscopy and Raman scattering spectroscopy. Wetting contact angle, stress and friction coefficient were also evaluated. Our results demonstrated CD-DLC films are more hydrogenated and hydrophobic, with higher fiction coefficient. The stress values kept almost constantly. 相似文献
20.
Takanori Takeno Hiroyuki Miki Toshiyuki Takagi Hideya Onodera 《Diamond and Related Materials》2006,15(11-12):1902
Tungsten-containing diamond-like carbon films with different metal concentrations were investigated. The films of several hundred nanometers in thickness were deposited on the silicon wafer using RF-PECVD (radio frequency plasma enhanced chemical vapor deposition) method. During deposition, metal component was co-sputtered using DC magnetron of tungsten target. The six samples with the concentration of 3.8, 6.1, 8.0, 16.3, 24.3 and 41.4 at.% of tungsten were made. The structural analyses were performed by TEM (transmission electron microscope) and Raman spectroscopy. These results indicated that tungsten clusters were well dispersed in amorphous carbon host matrix in the case of tungsten concentration from 3.8 to 24.2 at.%. However, no such a structure can be observed in the sample with 41.4 at.%. The AC electrical resistance was measured in the temperature range of 2–300 K using four-probe method in vacuum condition. The observed temperature dependence of electrical conductivity can be expressed by σ=σ0exp−2(C0/kT)1/2 and tungsten concentration from 3.8 at.% to 24.2 at.%. In addition, the sample with 41.4 at.% showed the resistive superconducting transition at Tc of around 5.5 K. 相似文献