首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
SPS-produced α-alumina samples are prepared from powders doped with different amounts of Zr4+ and La3+ cations. Zr4+ cations segregate at grain boundaries. m-ZrO2 particles are formed at 570 but not at 280 cat ppm. A β-alumina LaAl11O18 structure is found at 310 cat ppm when the lanthanum grain boundary solubility limit is exceeded (∼200 cat ppm). 100 cat ppm La is sufficient to block the diffusion path across grain boundaries and inhibit grain growth. Both doping cations disturb the grain boundary diffusion whatever their amount. They delay the densification at higher temperatures while limiting grain growth. The real in-line transmittance (RIT) of α-alumina is improved due to the reduced grain size. Nevertheless, increasing the cation amount leads to an increase in porosity or even the formation of secondary phase particles, both detrimental for optical properties. Finally, optimised amounts of cation of 200 and 150 cat ppm are found for La- and Zr-doped alumina, respectively.  相似文献   

2.
《Ceramics International》2016,42(4):4754-4763
Manganese substituted nickel ferrites, Ni1−xMnxFe2O4 (x=0, 0.3, 0.5 and 0.7) have been obtained by a combined method, heat treatment and subsequent mechanical milling. The samples were characterised by X-ray diffraction, differential scanning calorimetry and magnetic measurements. The increase of the Mn2+ cations amount into the spinel structure leads to a significant expansion of the cubic spinel structure lattice parameter. The crystallite size decreases with increasing milling time up to 120 min, more rapidly for the nickel–manganese ferrites with a large amount of Mn2+ cations (x=0.7). After only 15 min of milling the mean crystallites size is less than 25 nm for all synthesised ferrites. The Néel temperature decreases by increasing Mn2+ cation amount from 585 °C for x=0 up to 380 °C for x=0.7. The magnetisation of the ferrite increases by introducing more manganese cations into the spinel structure. The magnetisation of the milled samples decreases by increasing milling time for each ratio among Ni and Mn cations and tends to be difficult to saturate, a behaviour assigned to the spin canted effect.  相似文献   

3.
This paper reports the effect of Fe2O3 doping on the densification and grain growth in yttria-stabilized zirconia (YSZ) during sintering at 1150 °C for 2 h. Fe2O3 doped 3 mol% YSZ (3YSZ) and 8 mol% YSZ (8YSZ) coatings were produced using electrophoretic deposition (EPD). For 0.5 mol% Fe2O3 doping, both 3YSZ and 8YSZ coatings during sintering at 1150 °C has similar densification. However, a significant grain growth occurred in 8YSZ during sintering, whereas grain size remains almost constant in 3YSZ. XRD results suggest that Fe2O3 addition substitutionally and interstitially dissolved into the lattice of 3YSZ and 8YSZ. In addition, colour of 3YSZ and 8YSZ changes differently with doping of Fe2O3. A Fe3+ ion interstitial diffusion mechanism is proposed to explain the densification and grain growth behaviour in the Fe2O3 doped 3YSZ and 8YSZ. A retard grain growth observed in the Fe2O3 doped 3YSZ is attributed to Fe3+ segregation at grain boundary.  相似文献   

4.
Bulk and grain boundary diffusion of Nb5+ cations in yttria-stabilized zirconia (YSZ, 8 mol% Y2O3–92 mol% ZrO2) and in titania-doped yttria-stabilized zirconia (Ti–YSZ, 5 mol% TiO2–8 mol% Y2O3–87 mol% ZrO2) was studied in air in the temperature range from 900 to 1300 °C. Experiments were performed in the B-type kinetic region. Diffusion profiles were determined using the secondary ion mass spectrometry (SIMS). The temperature dependencies of the bulk diffusion coefficient D and the grain boundary diffusion parameter Dδs for both the materials were calculated. The activation energies of these transport processes in YSZ amounts to 258 and 226 kJ mol−1, respectively, and 232 and 114 kJ mol−1 in Ti–YSZ. The results were compared to the diffusion data of other cations previously obtained for the same material.  相似文献   

5.
CuAl1?xFexO2 (x = 0, 0.1, and 0.2) thermoelectric ceramics produced by a reaction-sintering process were investigated. Pure CuAlO2 and CuAl0.9Fe0.1O2 were obtained. Minor CuAl2O4 phase formed in CuAl0.8Fe0.2O2. Addition of 10 mol% Fe lowered the sintering temperature obviously and enhanced the grain growth. At x = 0.1, electrical conductivity = 3.143 Ω?1 cm?1, Seebeck coefficient = 418 μV K?1, and power factor = 5.49 × 10?5 W m?1 K?2 at 600 °C were obtained. The reaction-sintering process is simple and effective in preparing CuAlO2 and CuAl0.9Fe0.1O2 thermoelectric ceramics for applications at high temperatures.  相似文献   

6.
New heteronuclear (NH4)REIII[FeII(CN)6nH2O complexes (RE = La, Ce, Pr, Nd, Sm, Gd, Dy, Y, Er, Lu) were synthesized and their thermal decomposition products were investigated. The crystal structure of (NH4)RE[FeII(CN)6nH2O would be a hexagonal unit cell (space group: P63/m), which was the same as that of La[FeIII(CN)6]·5H2O. The hydration number n = 4 was estimated by TG results for all the RE complexes. The lattice constants depended on the ionic radius of the RE3+ ion for the heteronuclear complexes. The single phase of the perovskite type materials was directly obtained by decomposition of the heteronuclear complexes for RE = La, Pr, Nd, Sm, and Gd. A mixture of CeO2 and Fe2O3 was formed for RE = Ce because of its oxidation to Ce4+. In the case of RE = Dy, Y, Er, and Lu complexes, the perovskite type materials formed at higher temperature via. mixed oxides such as RE2O3 and RE4Fe5O13 due to the small RE3+ ionic radius.  相似文献   

7.
The Mannich reaction of 2-aminoethanol, 2-tert-butyl-4-methylphenol, and formaldehyde at the ratio sets of 1:2:2 provided a new ligand, N-(1-ethanol)-N,N-bis(3-tert-butyl-5-methyl-2-hydroxybenxyl)amine (H3L). In the presence of base, H3L reacted with FeCl3·6H2O to form a dinuclear Fe(III) complex [Fe2L2] 1. The value of μeff at room temperature (5.95 μB), is much less than the expected spin-only value (8.37 μB) of two high spin (hs) Fe3+ (S = 5/2) ions [μ = g[∑ ZS(S + 1)]1/2], indicating there were strong interactions between Fe3+ ions. The effective magnetic moment (μeff) decreased abruptly with cooling to a minimum value of 0.1 μB at 2 K. It was worth noting that Fe3+ ions of 1 exhibited thermally induced quartet ? doublet spin transitions, and these transitions were abrupt. The magnetic behaviors of 1 denoted the occurrence of intramolecular anti-ferromagnetic interactions. J (? 13.58 cm? 1) agrees with the result from Gorun–Lippard equation, ? J (cm? 1) = Aexp(BP(Å) = 12.9).  相似文献   

8.
The sintering behavior of Y2O3 doped with 1 mol% of Ca2+, Mg2+, Mn2+, Ni2+, Sr2+ or Zn2+ was investigated by pressureless sintering in air at a sintering temperature in the range 900–1600 °C. The sintering temperature required for full densification in Y2O3 was reduced by 100–400 °C by the cation doping, while undoped Y2O3 was densified at 1600 °C. The most effective dopant among the examined cations was Zn2+. The grain growth kinetics of undoped and cation-doped Y2O3 was described by the parabolic law. The grain boundary mobility of Y2O3 was accelerated by doping of the divalent cations. High-resolution transmission electron microscopy (HRTEM) observations and nano-probe X-ray energy dispersive spectroscopy (EDS) analyses confirmed that the dopant cations tended to segregate along the grain boundaries without forming amorphous layers. The improved sinterability of Y2O3 is probably related to the accelerated grain boundary diffusion owing to the grain boundary segregation of the dopant cations.  相似文献   

9.
The high-temperature deformation behavior of a polycrystalline strontium titanate (SrTiO3) ceramic (6 μm grain size) was investigated at temperatures of 1200–1345 °C in an argon atmosphere. Compressive deformation tests were conducted at strain rates ranging from 5 × 10−6 to 5 × 10−5 s−1. Steady-state flow stresses were 0.05–30 MPa and increased with increasing strain rates. Stress exponents of ≈1, at temperatures >1200 °C, indicated a viscous diffusion-controlled deformation with an activation energy of ≈628 ± 24 kJ/mol. Comparison of activation energy with literature data suggests diffusion of cations as the rate-controlling mechanism. Absence of cavitation and grain-shape changes were consistent with grain-boundary sliding as the principal deformation mechanism. The electron back-scattered diffraction (EBSD) technique was used to determine the grain orientation as a function of applied strain. The results indicate that some of the grains rotate with cumulative rotation as large as 7° at a strain of 4%.  相似文献   

10.
A simple method for evaluating the surface acidity of different cation-exchanged montmorillonite (mont) clay catalysts, Mn+-mont (Mn+=Al3+, Fe3+, Cr3+, Zn2+, Ni2+, Cu2+, and H+), involving treatment with pyridine is described. After treating with pyridine, the samples were heated at 120 °C and the FT-IR spectra were directly recorded in the region 1650 and 1350 cm−1. The data obtained show the presence of both Lewis and Brønsted acid sites. The activities of the catalysts to bring about Brønsted acid catalysed esterification of succinic acid with iso-butanol to yield di-(iso-butyl) succinate have been studied. The Brønsted acidity data obtained for Mn+-mont correlated well with activity in the esterification reaction. The activities of the catalysts were found to decrease in the order of exchange ions Al3+ > Fe3+ > Cr3+ > Zn2+ > Ni2+ > Cu2+ > Na+-mont. They also correlated well with the charge to radius ratio of the cations. The catalysts exchanged with trivalent cations showed stronger absorption bands attributed to Brønsted acidity (1540 cm−1) whereas those exchanged with divalent cations showed an increased Lewis acidity (1450 cm−1) and reduced Brønsted acidity along with charge to radius ratio. Zn2+-, Cu2+- and Ni2+-exchanged clays showed an additional peak around 1605 cm−1 which is attributed to the pyridine adsorption on surface sites through its π electrons. The method suggested here to evaluate the acidity is suitable for active sites which are thermally unstable such as water molecules in the hydration shell of a cation in exchanged clay.  相似文献   

11.
《Ceramics International》2017,43(11):8378-8390
Dysprosium (Dy) substituted nickel ferrite (NiDyxFe2-xO4) powders with varying Dy content (x=0.0, 0.025, 0.05, 0.075, 0.1, 0.2) have been prepared by combustion method using DL-alanine fuel. Sintering characteristics of the powders and electrical properties of ceramics have been studied. Effective substitution of Dy3+ for Fe3+ is seen up to x=0.075 yielding improved properties, and a higher Dy content (x≥0.1) leads to partial substitution, disturbed stoichiometry, and diffusion of Dy to the grain boundaries and segregation as a secondary phase. Increasing Dy content reduces the crystallite size, powder particle size, and grain size in sintered ceramics, and the changing microstructural evolution is better resolved with back scattered electron imaging and compositional analysis. Raman spectroscopy confirms inverse spinel structure formation and substantiates the presence of secondary phase evidenced through X-ray diffraction and electron microscopy. A marginal increase in the electrical resistivity (ρdc) and magnetization are observed due to effectual substitution of Dy3+ for Fe3+ at the octahedral sites up to x=0.075. For x≥0.1, the increasing influence of highly resistive DyFeO3 secondary phase at the inter-granular boundaries leads to a rapid increase in resistivity and reduction in dielectric losses, and the magnetization is reduced due to the anti-ferromagnetic nature of the secondary phase (DyFeO3). Dense ceramics with high resistivity (~109 Ω cm), low dielectric loss (tan δ ~0.002) at 1 MHz, and high magnetization (50.07 emu/g) are obtained for an optimum Dy content of x=0.075. Dielectric response, complex impedance, and electrical modulus spectroscopy in the frequency range (10−2–106 Hz) reflect the changes in the microstructure, and suggests a non-Debye type relaxation.  相似文献   

12.
The subsolidus cubic pyrochlore phases in the Bi2O3–MgO–Ta2O5 (BMT) system were prepared with the proposed formula, Bi3+(5/2)xMg2?xTa3?(3/2)xO14?x (0.12  x  0.22). Replacement of smaller cations, Mg2+ and Ta5+ by larger Bi3+ cations with considerable oxygen non-stoichiometry within structure was proposed. The synthesised samples were confirmed phase pure by X-ray powder diffraction and their refined lattice parameters were in the range of 10.5532(4)–10.5672(9) Å. The grain sizes of the samples determined by SEM analysis were in the range of 0.6–10.60 μm and their average relative densities were more than 80%. Five infrared-active modes were also observed in their FTIR spectra due to their metaloxygen bonds. The BMT pyrochlores were highly electrical resistive with high dielectric constants, ?′ in the range of ~70–85; dielectric losses, tan δ in the order of 10?3 at frequency 1 MHz and a negative temperature coefficient of permittivities, TC?′ of ~?158 to ?328 ppm/°C.  相似文献   

13.
《Ceramics International》2016,42(11):13104-13112
Magnetic susceptibility and phonons have been characterized in multiferroic Bi(Fe1−xCox)O3−δ ceramics for x=0.0, 0.05, and 0.10 (BFO100xCo) as functions of temperature. A preferred (100) crystallographic orientation and increasing average oxygen vacancies were observed in BFO5Co and BFO10Co. The Fe and Co K-edge synchrotron X-ray absorptions revealed mixed valences of Fe3+, Fe4+, Co2+, and Co3+ ions in BFO5Co and BFO10Co, which exhibit a ferromagnetic (or ferrimagnetic) phase below room temperature due to appearance of ferromagnetic B–O–B (B=Fe and Co) superexchange interactions. Field–cooled (FC) and zero–field–cooled (ZFC) magnetic susceptibilities exhibit a significant spin-glass splitting below room temperature in BFO5Co and BFO10Co. Two Raman-active phonon anomalies at ~170 K (or 200 K) and ~260 K were attributed to the Fe3+–O–Co3+ and Co3+–O–Co3+ magnetic orderings, respectively. This work suggests that the low-spin Co2+–O–Co2+, Fe3+–O–Fe3+ (or Fe4+), and high-spin Co2+–O–Co2+ superexchange interactions are responsible for phonon anomalies at ~290 (or ~300 K), ~400, and ~470 K (or ~520 K) in BFO5Co and BFO10Co.  相似文献   

14.
Perovskites La1−xCaxAlyFe1−yO3−δ (x, y = 0 to 1) were prepared by high-temperature solid-state synthesis based on mixtures of oxides produced by colloidal milling. The XRD analysis showed that perovskites La0.5Ca0.5AlyFe1−yO3−δ with a high Fe content (1  y = 0.8–1.0) were of orthorhombic structure, perovskites with a medium Fe content (1  y = 0.8–0.5) were of rhombohedral structure, and perovskite with the lowest Fe content (1  y = 0.2) were of cubic structure. Thermally programmed desorption (TPD) of oxygen revealed that chemical desorption of oxygen in the temperature range from 200 to 1000 °C had proceeded in the two desorption peaks. The low-temperature α-peak (in the 200–550 °C temperature range) was brought about by oxygen liberated from oxygen vacancies; the high-temperature β-peak (in the 550–1000 °C temperature range) corresponded to the reduction of Fe4+ to Fe3+. The chemidesorption oxygen capacity increased with increasing Ca content and decreased with increasing Al content in the perovskites. The Al3+ ions restricted, probably for kinetic reasons, the reduction of Fe4+ and the high-temperature oxygen desorption associated with it.  相似文献   

15.
Nanoparticles of Co0.5Zn0.5AlxFe2?xO4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized by sol–gel method and the influence of Al3+ doping on the properties of Co0.5Zn0.5Fe2O4 was studied. X-ray diffraction studies revealed the formation of single phase spinel type cubical structure having space group Fd-3m. A decreasing trend of the lattice parameter was observed with increasing Al3+ concentration due to the smaller ionic radii of Al3+ ion as compared to Fe3+ ion. TEM was used to characterize the microstructure of the samples and particle size determination, which exhibited the formation of spherical nanoparticles. The particle size was found to be increases up to ~45 nm after annealing the sample at 1000 °C. Electrical resistivity was found to increase with Al3+ doping, attributed to the decrease in the number of Fe2+–Fe3+ hopping. The activation energy decreased with increasing Al3+ ion concentration, indicating the blocking of conduction mechanism between Fe3+–Fe2+ ions. The value of saturation magnetization decreased, when Fe3+ ions were doped with Al3+ ions in Co0.5Zn0.5Fe2O4; however, the coercivity values increased with increasing Al3+ ion content.  相似文献   

16.
《Ceramics International》2017,43(14):10866-10872
Piezoelectric ceramics of Pb0.98Sr0.02(Mn1/3Sb2/3)0.05Zr0.48Ti0.47O3 with 0.25 wt% CeO2, 0.50 wt% Yb2O3, and x wt% Fe2O3 (x = 0.02, 0.05, 0.1, 0.15, and 0.2) additives were synthesized using a conventional solid-state reaction. Their piezoelectric properties and, in particular their nonlinear dielectric behaviors were systematically investigated. Iron was mainly present in the form of Fe3+ based on X-ray photoelectron spectroscopy; a small amount of the iron was reduced to Fe2+. Iron occupied the B-site of the perovskite structure, as shown in the refinement results. The samples displayed both “soft” and “hard” properties because Fe3+ can be incorporated at the Mn2+, Zr4+, Ti4+, and Sb5+ sites. The domain wall motion was found to be related not only to the type of deficiency but also to the grain size and grain boundary effects based on the nonlinear dielectric behaviors under alternating electric fields. The optimal overall properties of d33 = 360 pC/N, tan δ = 0.295%, Qm = 1500, kp = 0.61, εr = 1055, αε = 4.574*10−4 m/V, and tan δ = 2.76% (under 500 V/mm) were obtained for samples sintered at 1150 °C(x=0.15).  相似文献   

17.
《Ceramics International》2016,42(4):4748-4753
The effect of substitution of diamagnetic Al3+ and In3+ ions for partial Fe3+ ions in a spinel lattice on the magnetic and microwave properties of magnesium–manganese (Mg–Mn) ferrites has been studied. Three kinds of Mg–Mn based ferrites with compositions of Mg0.9Mn0.1Fe2O4, Mg0.9Mn0.1Al0.1Fe1.9O4, and Mg0.9Mn0.1In0.1Fe1.9O4 were prepared by the solid-state reaction route. Each mixture of high-purity starting materials (oxide powders) in stoichiometric amounts was calcined at 1100 °C for 4 h, and the debinded green compacts were sintered at 1350 °C for 4 h. XRD examination confirmed that the sintered ferrite samples had a single-phase cubic spinel structure. The incorporation of Al3+ or In3+ ions in place of Fe3+ ions in Mg–Mn ferrites increased the average particle size, decreased the Curie temperature, and resulted in a broader resonance linewidth as compared to un-substituted Mg–Mn ferrites in the X-band. In this study, the In3+ substituted Mg–Mn ferrites exhibited the highest saturation magnetization of 35.7 emu/g, the lowest coercivity of 4.1 Oe, and the highest Q×f value of 1050 GHz at a frequency of 6.5 GHz.  相似文献   

18.
In this paper Zn2 +, Co2 +, Fe3 + and La3 + were respectively introduced into Mg3Al1 mixed oxides to prepare Mg1Zn2Al1, Mg1Co2Al1, Mg3Al0.6Fe0.4 and Mg3Al0.6La0.4 oxides by calcinations at 773 K. The XRD, XPS, BET, ICP-AES and CO2-TPD characterizations of samples exhibited that the effects of the substitution of trivalent cations (Fe3 +, La3 +) for Al3 + on the basicity of samples were stronger than the substitution of divalent cations (Zn2 +, Co2 +) for Mg2 + because of high O2  concentration which were coincident with the FAME yield for these catalysts. La3 + modified catalyst exhibited highest activity in transesterification.  相似文献   

19.
Apatite-type neodymium silicates doped with various cations at the Si site, Nd10Si5BO27?δ (B=Mg, Al, Fe, Si), were synthesized via the high-temperature solid state reaction process. X-ray diffraction and complex impedance analysis were used to investigate the microstructure and electrical properties of Nd10Si5BO27?δ ceramics. All Nd10Si5BO27?δ ceramics consist of a hexagonal apatite structure with a space group P63/m and a small amount of second phase Nd2SiO5. Neodymium silicates doped with Mg2+ or Al3+ cations at the Si site have an enhanced total conductivity as contrasted with undoped Nd10Si6O27 ceramic at all temperature levels. However, doping with Fe3+ cations at the Si site has a little effect on improving the total conductivity above 873 K. The enhanced oxide-ion conductivity in a hexagonal apatite-type structure depends upon the diffusion of interstitial oxide-ion through oxygen vacancies induced by the Mg2+ or Al3+ substitution to the Si4+ site and through the channels between the SiO4 tetrahedron and Nd3+ cations. At 773 K, the highest total conductivity is 4.19×10?5 S cm?1 for Nd10Si5MgO26 ceramic. At 1073 K, Nd10Si5AlO26.5 silicate has a total conductivity of 1.55×10?3 S cm?1, which is two orders of magnitude higher than that of undoped Nd10Si6O27.  相似文献   

20.
The transformation of doped or seeded pseudoboehmite to corundum was studied by combining thermal analysis, X-ray diffraction, transmission electron microscopy, and electron paramagnetic resonance spectroscopy. The temperature of phase transformation to corundum was lowered by about 130 °C when Fe3+ or corundum seeds were added to the sols. Action of Fe3+ ions depends on the actual degree of thermally induced transformation of pseudoboehmite via transition aluminas to corundum and the ability of these alumina phases to incorporate Fe3+ ions. These ions tend to aggregate with increasing iron concentration of the alumina phases and can work as nucleation centers. Small (∼20 nm) corundum particles act as active nucleation sites whereas larger grains (200–400 nm) also present in the samples are less effective. For the first time trapping and stabilization of NO2 molecules in transition aluminas formed by a sol–gel route was shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号