首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In the actual working site, the equipment often works in different working conditions while the manufacturing system is rather complicated. However, traditional multi-label learning methods need to use the pre-defined label sequence or synchronously predict all labels of the input sample in the fault diagnosis domain. Deep reinforcement learning (DRL) combines the perception ability of deep learning and the decision-making ability of reinforcement learning. Moreover, the curriculum learning mechanism follows the learning approach of humans from easy to complex. Consequently, an improved proximal policy optimization (PPO) method, which is a typical algorithm in DRL, is proposed as a novel method on multi-label classification in this paper. The improved PPO method could build a relationship between several predicted labels of input sample because of designing an action history vector, which encodes all history actions selected by the agent at current time step. In two rolling bearing experiments, the diagnostic results demonstrate that the proposed method provides a higher accuracy than traditional multi-label methods on fault recognition under complicated working conditions. Besides, the proposed method could distinguish the multiple labels of input samples following the curriculum mechanism from easy to complex, compared with the same network using the pre-defined label sequence.  相似文献   

2.
    
Bearings and tools are the important parts of the machine tool. And monitoring automatically the fault of bearings and the wear of tools under different working conditions is the necessary performance of the intelligent manufacturing system. In this paper, a multi-label imitation learning (MLIL) framework is proposed to monitor the tool wear and bearing fault under different working conditions. Specially, the multi-label samples with multiple sublabels are transformed into the imitation objects, and the MLIL develops a discriminator and a deep reinforcement learning (DRL) to imitate the feature from imitation objects. In detail, the DRL is implemented without setting the reward function to enhance the feature extraction ability of deep neural networks, and meanwhile the discriminator is used to discriminate the generations of DRL and imitation objects. As a result, the MLIL framework can not only deal with the correlation between multiple working conditions including different speeds and loads, but also distinguish the compound fault composed of coinstantaneous bearing fault and tool wear. Two cases demonstrate jointly the imitation ability of the MLIL framework on monitoring tool wear and bearing fault under different working conditions.  相似文献   

3.
    
In the Internet of Things (IoT), a huge amount of valuable data is generated by various IoT applications. As the IoT technologies become more complex, the attack methods are more diversified and can cause serious damages. Thus, establishing a secure IoT network based on user trust evaluation to defend against security threats and ensure the reliability of data source of collected data have become urgent issues, in this paper, a Data Fusion and transfer learning empowered granular Trust Evaluation mechanism (DFTE) is proposed to address the above challenges. Specifically, to meet the granularity demands of trust evaluation, time–space empowered fine/coarse grained trust evaluation models are built utilizing deep transfer learning algorithms based on data fusion. Moreover, to prevent privacy leakage and task sabotage, a dynamic reward and punishment mechanism is developed to encourage honest users by dynamically adjusting the scale of reward or punishment and accurately evaluating users’ trusts. The extensive experiments show that: (i) the proposed DFTE achieves high accuracy of trust evaluation under different granular demands through efficient data fusion; (ii) DFTE performs excellently in participation rate and data reliability.  相似文献   

4.
多标签图像分类问题是计算机视觉领域的重要问题之一,它需要对图像中的所有标签进行预测.而一幅图像中待分类的标签个数往往不止一个,同时图像中对象的大小、位置和姿态的变化都会对模型的分类性能产生影响.因此,如何有效地提高图像特征的准确表达能力是一个亟需解决的难题.针对上述难题,文中提出了一个新颖的双流重构网络来对图像进行特征...  相似文献   

5.
大数据时代,数据呈现维度高、数据量大和增长快等特点。如何有效利用其中蕴含的有价值信息,以实现数据的智能化处理,已成为当前理论和应用的研究热点。针对现实普遍存在的多义性对象,数据多标签被提出并被广泛应用于数据智能化组织。近年来,深度学习在数据特征提取方面呈现出高速、高精度等优异性,使基于深度学习的多标签生成得到广泛关注。文中分五大类别总结了最新研究成果,并进一步从数据、关系类型、应用场景、适应性及实验性能方面对其进行对比和分析,最后探讨了多标签生成面临的挑战和未来的研究方向。  相似文献   

6.
如今生活中,图像资源无处不在,海量的图像让人应接不暇。如何快速有效地对这些图像信息进行查询、检索和组织,成为了当前亟需解决的热门问题。而图像自动标注是解决基于文本的图像检索的关键。文中提出的这套基于深度学习模型中的卷积神经网络模型的多标签图像自动标注系统,实现了多标签损失排名函数,完成了多标签数据的训练与测试。在实验验证上,先选取CIFAR-10数据集进行算法的有效性测试,然后选取多标签图像数据集Corel 5k进行定量测试比较,结果表明,该算法的综合性能指标与现有算法相比有较大的提升。  相似文献   

7.
微表情指当人们试图隐藏或抑制自己的真实情感时,脸上出现的一种无法控制的肌肉运动.此类情绪面部表情由于具有持续时间短、动作幅度小、难以掩饰和抑制的特点,因此其识别精度受到了制约.为了应对这些挑战,文中提出一种结合特征融合和注意力机制的微表情识别方法,同时考虑了光流特征和人脸特征,通过进一步加入注意力机制来提升识别性能.该...  相似文献   

8.
    
Health sensing system (HSS), offering a variety of health services, has attracted considerable research attention in the area of smart healthcare. However, continuous sensing inevitably brings dramatic energy consumption of mobile sensing devices. On the other hand, the reduction of sensing time duration causes excessive delay in sensing a user state change and the missing of critical physiologic signal. Thus, the trade-off between energy consumption and delay constitutes a primary challenge in the design of HSS. In this paper, we propose an adaptive sensing strategy to intelligently determine the trigger time for sensing physiological parameters at a HSS. Furthermore, human context recognition (HCR) is adopted to design context-aware sensing strategy, where the health condition, sensing requirements, and dependence on physiological data are considered simultaneously. To devise the sensing strategy, we first generate a dynamic observation model. Next, we propose a sort retention double-DQN based sensing strategy. In comparison to traditional double-DQN, the proposed approach can effectively enhance learning stability and sample efficiency. With SRD-DQN, we can obtain the optimized solution for the schedule of the successive window according to the current state. We implement blood pressure and heart rate monitoring simulations to evaluate the performance of the proposed sensing strategy. Simulation results reveal that the sensing strategy can effectively restrain energy consumption and delay, and SRD-DQN converges faster than traditional DQN.  相似文献   

9.
针对现有技术难以并行实现舌象多标签的高效分类和识别,难以利用标签间的相关性进行综合分析等问题,提出了一种基于多任务卷积神经网络的舌象分类方法,构建了一种多任务联合学习模型,尝试实现传统中医舌诊中对舌色、苔色、裂纹和齿痕等多个标签的同时辨识。首先,在共享网络层对所有标签进行联合学习,从特征提取的角度自动挖掘和利用标签间的相关性;然后,在不同子网络层分别完成特定类别的学习任务,从而消除多标签分类中的歧义性;最后,训练多个Softmax分类器以实现对所有标签的并行预测。研究表明,所提方法能以端到端的方式同时提取舌象的多个特征并直接进行分类识别,在各分类评价指标上的最低值约为0.96,多任务的总体识别时间为34ms,因此该方法在精度和速度上均具有明显优势。  相似文献   

10.
    
This paper firstly introduces common wearable sensors, smart wearable devices and the key application areas. Since multi-sensor is defined by the presence of more than one model or channel, e.g. visual, audio, environmental and physiological signals. Hence, the fusion methods of multi-modality and multi-location sensors are proposed. Despite it has been contributed several works reviewing the stateoftheart on information fusion or deep learning, all of them only tackled one aspect of the sensor fusion applications, which leads to a lack of comprehensive understanding about it. Therefore, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of the fusion methods of wearable sensors. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of multi-sensor applications for human activity recognition, including those recently added to the field for unsupervised learning and transfer learning. Finally, the open research issues that need further research and improvement are identified and discussed.  相似文献   

11.
作为一种崭新的机器学习方法,深度强化学习将深度学习和强化学习技术结合起来,使智能体能够从高维空间感知信息,并根据得到的信息训练模型、做出决策。由于深度强化学习算法具有通用性和有效性,人们对其进行了广泛的研究,并将其运用到了日常生活的各个领域。首先,对深度强化学习研究进行概述,介绍了深度强化学习的基础理论;然后,分别介绍了基于值函数和基于策略的深度强化学习算法,讨论了其应用前景;最后,对相关研究工作做了总结和展望。  相似文献   

12.
以无人机网络的资源分配为研究对象,研究了基于强化学习的多无人机网络动态时隙分配方案,在无人机网络中,合理地分配时隙资源对改善无人机资源利用率具有重要意义;针对动态时隙分配问题,根据调度问题的限制条件,建立了多无人机网络时隙分配模型,提出了一种基于近端策略优化(PPO)强化学习算法的时隙分配方案,并进行强化学习算法的环境映射,建立马尔可夫决策过程(MDP)模型与强化学习算法接口相匹配;在gym仿真环境下进行模型训练,对提出的时隙分配方案进行验证,仿真结果验证了基于近端策略优化强化学习算法的时隙分配方案在多无人机网络环境下可以高效进行时隙分配,提高网络信道利用率,提出的方案可以根据实际需求适当缩短训练时间得到较优分配结果.  相似文献   

13.
    
The quality of fault recognition part is one of the key factors affecting the efficiency of intelligent manufacturing. Many excellent achievements in deep learning (DL) have been realized recently as methods of fault recognition. However, DL models have inherent shortcomings. In particular, the phenomenon of over-fitting or degradation suggests that such an intelligent algorithm cannot fully use its feature perception ability. Researchers have mainly adapted the network architecture for fault diagnosis, but the above limitations are not taken into account. In this study, we propose a novel deep reinforcement learning method that combines the perception of DL with the decision-making ability of reinforcement learning. This method enhances the classification accuracy of the DL module to autonomously learn much more knowledge hidden in raw data. The proposed method based on the convolutional neural network (CNN) also adopts an improved actor-critic algorithm for fault recognition. The important parts in standard actor-critic algorithm, such as environment, neural network, reward, and loss functions, have been fully considered in improved actor-critic algorithm. Additionally, to fully distinguish compound faults under heavy background noise, multi-channel signals are first stacked synchronously and then input into the model in the end-to-end training mode. The diagnostic results on the compound fault of the bearing and tool in the machine tool experimental system show that compared with other methods, the proposed network structure has more accurate results. These findings demonstrate that under the guidance of the improved actor-critic algorithm and processing method for multi-channel data, the proposed method thus has stronger exploration performance.  相似文献   

14.
深度强化学习是人工智能领域新兴技术之一,它将深度学习强大的特征提取能力与强化学习的决策能力相结合,实现从感知输入到决策输出的端到端框架,具有较强的学习能力且应用广泛.然而,已有研究表明深度强化学习存在安全漏洞,容易受到对抗样本攻击.为提高深度强化学习的鲁棒性、实现系统的安全应用,本文针对已有的研究工作,较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析,并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势,旨在为从事相关安全研究与工程应用提供基础.  相似文献   

15.
深度强化学习是人工智能领域新兴技术之一,它将深度学习强大的特征提取能力与强化学习的决策能力相结合,实现从感知输入到决策输出的端到端框架,具有较强的学习能力且应用广泛.然而,已有研究表明深度强化学习存在安全漏洞,容易受到对抗样本攻击.为提高深度强化学习的鲁棒性、实现系统的安全应用,本文针对已有的研究工作,较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析,并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势,旨在为从事相关安全研究与工程应用提供基础.  相似文献   

16.
现有移动群智感知系统的任务指派主要面向单一类型移动用户展开,对于存在多种类型移动用户的异构群智感知任务指派研究相对缺乏.为此,本文针对异质移动用户,定义其区域可达性,并给出感知子区域类型划分.进而,兼顾感知任务数量和移动用户规模的时变性,构建了动态异构群智感知系统任务指派的多目标约束优化模型.模型以最大化感知质量和最小化感知成本为目标,综合考虑用户的最大任务执行数量、无人机的受限工作时间等约束.为解决该优化问题,本文提出一种基于近端策略优化的多目标进化优化算法.采用近端策略优化,根据种群的当前进化状态,选取具有最高奖励值的进化算子,生成子代种群.面向不同异构群智感知实例,与多种算法的对比实验结果表明,所提算法获得的Pareto最优解集具有最佳的收敛性和分布性,进化算子选择策略可以有效提升对时变因素的适应能力,改善算法性能.  相似文献   

17.
    
Prediction of wind speed can provide a reference for the reliable utilization of wind energy. This study focuses on 1-hour, 1-step ahead deterministic wind speed prediction with only wind speed as input. To consider the time-varying characteristics of wind speed series, a dynamic ensemble wind speed prediction model based on deep reinforcement learning is proposed. It includes ensemble learning, multi-objective optimization, and deep reinforcement learning to ensure effectiveness. In part A, deep echo state network enhanced by real-time wavelet packet decomposition is used to construct base models with different vanishing moments. The variety of vanishing moments naturally guarantees the diversity of base models. In part B, multi-objective optimization is adopted to determine the combination weights of base models. The bias and variance of ensemble model are synchronously minimized to improve generalization ability. In part C, the non-dominated solutions of combination weights are embedded into a deep reinforcement learning environment to achieve dynamic selection. By reasonably designing the reinforcement learning environment, it can dynamically select non-dominated solution in each prediction according to the time-varying characteristics of wind speed. Four actual wind speed series are used to validate the proposed dynamic ensemble model. The results show that: (a) The proposed dynamic ensemble model is competitive for wind speed prediction. It significantly outperforms five classic intelligent prediction models and six ensemble methods; (b) Every part of the proposed model is indispensable to improve the prediction accuracy.  相似文献   

18.
    
How to design System of Systems has been widely concerned in recent years, especially in military applications. This problem is also known as SoS architecting, which can be boiled down to two subproblems: selecting a number of systems from a set of candidates and specifying the tasks to be completed for each selected system. Essentially, such a problem can be reduced to a combinatorial optimization problem. Traditional exact solvers such as branch-bound algorithm are not efficient enough to deal with large scale cases. Heuristic algorithms are more scalable, but if input changes, these algorithms have to restart the searching process. Re-searching process may take a long time and interfere with the mission achievement of SoS in highly dynamic scenarios, e.g., in the Mosaic Warfare. In this paper, we combine artificial intelligence with SoS architecting and propose a deep reinforcement learning approach DRL-SoSDP for SoS design. Deep neural networks and actor–critic algorithms are used to find the optimal solution with constraints. Evaluation results show that the proposed approach is superior to heuristic algorithms in both solution quality and computation time, especially in large scale cases. DRL-SoSDP can find great solutions in a near real-time manner, showing great potential for cases that require an instant reply. DRL-SoSDP also shows good generalization ability and can find better results than heuristic algorithms even when the scale of SoS is much larger than that in training data.  相似文献   

19.
    
Disease detection from smartphone data represents an open research challenge in mobile health (m-health) systems. COVID-19 and its respiratory symptoms are an important case study in this area and their early detection is a potential real instrument to counteract the pandemic situation. The efficacy of this solution mainly depends on the performances of AI algorithms applied to the collected data and their possible implementation directly on the users’ mobile devices. Considering these issues, and the limited amount of available data, in this paper we present the experimental evaluation of 3 different deep learning models, compared also with hand-crafted features, and of two main approaches of transfer learning in the considered scenario: both feature extraction and fine-tuning. Specifically, we considered VGGish, YAMNET, and L3-Net (including 12 different configurations) evaluated through user-independent experiments on 4 different datasets (13,447 samples in total). Results clearly show the advantages of L3-Net in all the experimental settings as it overcomes the other solutions by 12.3% in terms of Precision–Recall AUC as features extractor, and by 10% when the model is fine-tuned. Moreover, we note that to fine-tune only the fully-connected layers of the pre-trained models generally leads to worse performances, with an average drop of 6.6% with respect to feature extraction. Finally, we evaluate the memory footprints of the different models for their possible applications on commercial mobile devices.  相似文献   

20.
立场分析旨在发现用户对特定目标对象所持的观点态度。针对现有方法往往难以克服标注数据匮乏及微博文本中大量未登录词等导致的分词误差的问题,提出了基于迁移学习及字、词特征混合的立场分析方法。首先,将字、词特征输入深度神经网络,级联两者隐藏层输出,复现由分词错误引起的缺失语义信息;然后,利用与立场相关话题的辅助数据训练话题分类模型(父模型),得到更为有效的句子特征表示;接着,以父模型参数初始化立场分析模型(子模型),从辅助数据(话题分类数据)迁移知识能加强句子的语义表示能力;最后,使用有标注数据微调子模型参数并训练分类器。在NLPCC-2016任务4的语料上进行实验,F1值达72.2%,优于参赛团队的最佳成绩。实验结果表明,该方法可提高立场分类性能,同时缓解分词误差带来的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号