共查询到17条相似文献,搜索用时 109 毫秒
1.
厌氧段HRT对A2N工艺反硝化除磷脱氮效果的影响 总被引:7,自引:0,他引:7
为了考察厌氧段水力停留时间(HRT)对A2N工艺反硝化除磷脱氮效果的影响,采用连续流双污泥反硝化除磷脱氮装置以生活污水为处理对象,研究了厌氧段在不同HRT时系统的除磷脱氮效果,以及厌氧段不同HRT对系统处理过程的影响。结果表明,厌氧段是A2N工艺实现反硝化除磷脱氮的关键阶段。当厌氧段的HRT过长时,虽然溶解性PO4^3-的总释放量增加,但是后续的缺氧吸磷量和总氮的去除量并没有相应地增加。厌氧段的HRT时间过短,反硝化聚磷菌(DPB)在此对进水中易降解COD(CODRB)吸收不完全,导致后续缺氧吸磷量下降,同时影响了系统的除磷和脱氮效果。在处理实际生活污水水质时,厌氧段的HRT为2h即可满足除磷和脱氮要求。 相似文献
2.
以生活污水培养驯化污泥的小试规模A/A/O工艺为研究对象,进行了混合液回流比为100%、200%和300%时对反硝化除磷的影响研究,并利用厌氧/缺氧批式试验方法对污泥特性进行单独考察。结果表明,随着混合液回流比的增大,缺氧除磷在系统除磷所起的作用、反硝化聚磷菌缺氧利用单位聚羟基链烷酸(PHAs)的吸磷量和反硝化数量出现先升高后下降,厌氧合成单位PHAs的释磷量和好氧利用单位PHAs的吸磷量并没有受到影响,以200%时反硝化除磷和系统脱氮除磷效果为最好,过高或过低NO3-N浓度均会影响反硝化聚磷菌的缺氧吸磷速率和PHAs降解速率,但并没有影响其本身所固有的特性。 相似文献
3.
SRT对A2/O工艺脱氮除磷的影响 总被引:7,自引:0,他引:7
以小试规模A^2/O工艺结合活性污泥数学模型(ASM2D),考察了实际污水中污泥龄为8、10、12、15d时对脱氮除磷的影响,并建立了AVO数学模型进行模拟与优化。结果表明,除碳和脱氮率基本不受污泥龄的影响,去除率分别为80%~88%和57%~65%;聚磷菌释磷和吸磷受污泥龄的影响较大,以12d时脱氮除磷效率为最高,出水基本能达到城镇污水处理厂污染物排放一级标准;COD、NH3-N和P在各反应器内的模拟值与实测值较为接近,在短污泥龄时受模型结构限制,NO3^·-N模拟值与实测值相差较大,在长污泥龄时NO3^·-N的模拟精度达93%,所建立的模型可较好地模拟工艺运行;通过分析模拟优化结果,得出最佳污泥龄约为13d,与试验结果基本相吻合。 相似文献
4.
在A2/O工艺中,通过调节混合液回流比,实现了反硝化除磷菌的富集。COD和氨氮的平均去除率分别为85%和95.6%,达到稳定除磷效果时,磷酸盐的平均去除率为82.9%。缺氧段吸磷量所占比例从27.4%增至65.7%,反应后期平均比值为62.6%。污泥特性实验表明最大缺氧吸磷速率为5.79 mgP/(gMLSS.h),最大好氧吸磷速率为9.29 mgP/(gMLSS.h),两者的比值为62.3%。 相似文献
5.
通过静态试验考察除磷菌的厌氧释磷和好氧吸磷情况。在厌氧状态、在低有机负荷率的条件下,污泥释磷的速率随有机负荷率的升高而增加,但当有机负荷率超过一临界数值0.12gSCOD/gMLSS后,有机负荷率不再成为释磷菌厌氧释磷的限制性因素。此外,试验考察了硝态氮的存在对厌氧释磷和后续好氧吸磷的影响,发现硝态氮的存在不利于除磷菌的厌氧释磷并从而限制了在后续好氧状态下的吸磷效果。在上述试验的基础上,采用厌氧工艺与MBP,联用处理生活污水来强化生物除磷效果,在静态试验的基础上选定了各个工段的工艺运行参数,并在此条件下进行了为期6个月的连续性试验,发现系统对COD、TP、SS、NH3-N和TN的平均去除率分别为92.50%、84.25%、100%、94.09%和85.33%。 相似文献
6.
采用分段式进水一体化工艺处理校园生活污水,考察了不同影响因素对除磷效率的影响。试验结果表明:在厌氧区和缺氧区进水流量比为3∶1时,总磷去除率最高,平均去除率达到了93%以上;在好氧区DO的质量浓度约为2.0 mg/L时,总磷去除率最高,平均去除率达到了91%以上;在HRT为8 h时,总磷去除率最高,平均去除率达到了93%左右;正交试验结果表明影响TP去除率的因素优先顺序为DO、进水流量比、 HRT,最佳组合工艺参数为厌氧区和缺氧区进水流量比为3∶1, DO的质量浓度为2.0 mg/L, HRT为8 h。 相似文献
7.
8.
《水处理技术》2021,47(10):90-93,98
采用化学除磷工艺处理城市污水,重点对比研究了单点与多点化学强化除磷工艺对TP与氮素去除效果的影响。结果表明,对于单点化学除磷工艺,PAC存在除磷极限,过量投加会造成药剂成本增加,对TP指标的控制无明显积极作用;采用多点化学强化除磷工艺,出水TP质量浓度能降至0.08 mg/L左右,去除率高达98.5%以上,相比单点化学除磷工艺而言,浓度下降了74.3%,下降趋势明显;基于本实验所采用的8种多点化学强化除磷工况,较为优化的A点PAC投加量为20 kg/km3,B点PFS投加量为17.5 kg/km3,该工况下,出水TP平均质量浓度为0.16 mg/L,TN平均质量浓度为9.17 mg/L,NH3-N平均质量浓度为0.20 mg/L,显著优于一级A排放标准,相比原工况,全年可节约107余万元的除磷剂费用,且出水TP与氮素指标能实现更加稳健的控制,有效促进了成本与水质的双赢。 相似文献
9.
如何有效提高城市污水厂除磷效率一直是研究的热点,而反硝化除磷菌可以在碳源不足的条件下,通过“一碳两用”的方式同时实现反硝化脱氮和吸磷作用,是一种新型高效的技术.试验以啤酒废水为研究对象,验证了厌氧-缺氧-好氧(A2O)工艺中反硝化除磷现象的存在及其对系统脱氮除磷的影响.试验结果表明,A2O系统稳定运行时,反硝化聚磷菌在缺氧区可利用在厌氧段储存的PHB大量吸磷,同时氮也得到去除,计算表明缺氧除磷量可占厌氧总释磷量的71.3%,另外可节约曝气能耗25%.无论系统进水COD浓度从200 mg8226;L-1变化为400 mg8226;L-1,COD、总氮和总磷去除率总能保持较高水平,平均出水总氮和总磷浓度分别小于10 mg8226;L-1和0.30 mg8226;L-1.另外发现,过量曝气对系统除磷具有明显的影响,导致除磷效率降低,甚至会产生不吸磷现象,系统需要经过约一个污泥龄时间才能恢复其吸磷能力,所以应加强系统曝气的控制. 相似文献
10.
11.
12.
13.
在采用人工废水厌氧-好氧交替运行出现了典型的厌氧释磷、好氧超量摄磷、具有良好的除磷效果的SBR中,不断缩短厌氧时间至只有好氧段,研究反应器对磷的去除特性的变化.结果表明,当进水COD、ρ(NH~+_4-N),ρ(PO_4~(3-)P)分别为100、5、10mg·L~(-1)时,厌氧时间由75min逐步缩短为15、10、5min,释磷几乎在进水的20 s内完成,反应器内磷的质量浓度达到28~40.16 mg·L~(-1),在随后的厌氧阶段,继续释磷,好氧段磷的质量浓度迅速降低,出水磷的质量浓度在3.62~5.32 mg·L~(-1)之间,磷的去除率由接近100%下降到50%左右;厌氧时间缩短为0min后,进水的同时就开始曝气,但仍然出现释磷,磷的质量浓度达到36.9mg·L~(-1),在随后135min内液相主体中磷的质量浓度快速降低,微生物对磷的去除率还能达到44%以上.沉淀期(30 min)和闲置期(40 min)均没有观察到水中磷质量浓度的增加,反应器出现单一好氧生物超量聚磷的现象.经过40d左右的运行,这种单一好氧生物摄磷也没消失,去除率稳定在40%以上.除磷的发生是微生物在进水有机物浓度很低下经过特定诱导,在好氧环境下进水瞬间DO质量浓度的短时略微下降释磷,然后超量摄磷的结果. 相似文献
14.
15.
16.
溶解氧对反硝化除磷的影响 总被引:8,自引:1,他引:7
使用人工配水,以A/O/A/O方式运行,考察了溶解氧(DO)对脱氮吸磷的影响,并结合批式试验进一步研究了NO_2~--N,NO_3~--N 对反硝化除磷的影响.试验证明,在SRT=15 d,ρ(MLSS)=3 200 mg·L~(-1)的条件下,ρ(DO)=2.5 mg·L~(-1)时氮和磷的去除效果最佳,TN、TP、COD和TOC的去除率分别为96.26%、99.87%、90.46%和85.57%. 相似文献
17.
采用混合反应器模拟氧化沟运行方式,探讨氧化沟不同好氧缺氧分区对脱氮除磷效果的影响。结果表明,在分点曝气氧化沟系统中氧传质推动力大,溶氧效率高,在相同的供氧条件下,其一个循环的好氧区比分段曝气系统好氧区长,但是分点曝气系统有机物耗氧多,DO浪费大,而分段曝气溶氧效率低,但DO的有效利用率(用于脱氮除磷)高,二者硝化能力相当,NH4+-N去除率分别为96.68%和97.03%,硝化菌活性分别为4.65、4.66 mg.g-1.h-1。在好氧区和缺氧区比例相同的条件下,分区越多,有机物被好氧异养菌利用的越多,脱氮除磷效果越差。分区减少,可以有效地增加反硝化菌对碳源的利用,对提高脱氮效果更有利。在同样的供氧条件下,分段曝气单个A/O分区长,反硝化菌和聚磷菌对碳源利用多,脱氮除磷效果优于分点曝气,在满足硝化的前提下,缺氧区和好氧区比例越大,碳源被利用的越完全,对脱氮除磷越有利,DO的有效利用率也越高,此时越接近于前置缺氧-好氧(A/O)工艺。 相似文献