首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
椰壳制备活性炭负载氧化铜处理酸性大红GR染料废水   总被引:1,自引:1,他引:1  
以海南废弃椰壳为原料,采用化学活化法(H3PO4为活化剂)制备椰壳粉末活性炭负载氧化铜催化剂处理酸性大红GR染料废水。研究了椰壳粉末活性炭的制备及负载金属氧化铜的工艺条件,用单因素实验法分别考察了磷酸浓度、液固比、活化温度、活化时间、焙烧温度、焙烧时间以及硝酸铜用量对废水中COD和色度去除率的影响。结果表明:制备椰壳粉末活性炭负载氧化铜催化剂的最优条件为:磷酸浓度65%,液固比3:1,活化温度600℃,活化时间2.5h,硝酸铜溶液(0.5mol·L-1)用量15mL,焙烧温度300℃,焙烧时间2.5h。用此条件下制备的样品处理废水可使COD和色度的去除率分别达到97.48%和99.98%,其相应的出水指标分别为16mg·L-1和5倍数,均达到我国纺织染整工业污染排放标准GB4287--92规定的一级排放标准。  相似文献   

2.
粉煤灰制备沸石负载氧化铜处理酸性大红GR废水   总被引:1,自引:1,他引:0  
以粉煤灰为原料,用碱熔-水热合成法制备沸石并负载氧化铜处理酸性大红GR废水。采用正交试验法考察了m(灰)/m(碱)比、m(灰)/m(水)比、煅烧温度和晶化时间对出水中色度和COD指标的影响,并确定了沸石制备的最佳工艺条件为m(灰)/m(碱)比1.2:1、m(灰)/m(水)比1:9,焙烧温度500℃和晶化时间10 h。将最佳条件下制备的沸石负载氧化铜并与过氧化氢联合催化氧化处理酸性大红GR废水,获得了满意的结果:出水中色度和COD指标达到25(稀释倍数)和105 mg.L-1,分别低于纺织染整工业污染排放标准GB 4287—92规定的一级和二级排放标准。制备的沸石经XRD表征,确定为NaA型沸石相。  相似文献   

3.
以粉煤灰作原材料制备沸石负载氧化铜处理活性艳红X-3B废水。采用正交试验法考察了灰/碱比、煅烧温度、晶化时间和灰/水比对出水COD和色度指标的影响,确定了沸石制备最佳工艺条件为灰/碱质量比1.2∶1、焙烧温度600℃、晶化时间6 h和灰/水质量比1∶11,制备的沸石负载氧化铜催化剂与过氧化氢联合催化氧化处理活性艳红X-3B废水,可使出水中COD和色度的指标由原水中的450 mg.L-1和10 240降至90 mg.L-1和3倍(稀释倍数),相应的去除率分别为80.02%和99.97%。  相似文献   

4.
混凝-Fenton法处理印染废水的试验研究   总被引:6,自引:0,他引:6  
目的研究混凝—Fenton法对印染废水色度和COD的处理效果,解决印染废水的色度与有机物难于处理的问题.并分析水样中H2O2浓度、FeSO4.7H2O浓度等因素对处理效果的影响.方法通过混凝试验对水样进行预处理,在此基础上通过改变水样中H2O2浓度、FeSO4.7H2O浓度、pH值、温度、反应时间等因素得出Fenton氧化印染废水的最佳操作条件.结果预处理选择的混凝药剂为FeSO4.7H2O,助凝药剂为聚丙烯酰胺,其最佳投药量分别为1.4(g.L-1)和0.012(g.L-1).后续处理中,水样中H2O2浓度为2(mL.L-1)、FeSO4.7H2O浓度为250(mg.L-1)、pH值为3、反应时间20 min、反应温度20℃时为Fenton氧化反应的最佳操作条件,氧化处理后的出水的色度和COD分别降低了97.14%和90.52%.结论混凝—Fenton法对印染废水的色度和COD能够进行有效的去除,处理后水质达到了国家排放标准,并且操作简单.  相似文献   

5.
以废木屑为原料制备载铜活性炭。采用单因素法确定硝酸铜用量,用Design-Expert7.0软件设计试验方案,建立响应面模型。通过对模型的分析,确定载铜活性炭的最优制备条件为:硝酸铜溶液(0.5 mol·L^-1)用量为15 mL,活化温度为690℃,活化时间为2.1 h和活化剂(质量分数为40%的磷酸)用量为56 mL。最优条件制备的载铜活性碳处理模拟印染废水,其色度和COD的去除率分别为99.80%和88.34%,处理后的废水的色度为32倍和COD值为75 mg·L^-1。  相似文献   

6.
化学改性对沸石去除水中碳、氮污染物的影响   总被引:2,自引:0,他引:2  
为提高沸石对水中多种污染物的去除效果,以水溶液中低浓度氨氮、硝态氮和有机物为研究对象,重点研究了乙酸、柠檬酸、柠檬酸钠、十二烷基磺酸钠(SDS)、氯化钠、十六烷基三甲基溴化铵(HDTMA)6种不同无机\有机化学改性剂对沸石去除氨氮、硝态氮、COD的影响.研究表明,对低浓度氨氮去除效果最好的为柠檬酸钠改性沸石,最佳浓度为0.05 mol/L,去除率为98.14%;对低浓度硝态氮去除效果最好的为HDTMA改性沸石,最佳浓度为0.05 mol/L,去除率为24.81%;对低浓度COD去除效果最好的为柠檬酸改性沸石,最佳浓度为0.05 mol/L,去除率为42.57%,且改性沸石阳离子交换容量的大小与其对氨氮的去除率呈正相关.同时得出了不同改性剂对沸石去除氨氮、硝态氮、COD的影响规律,并发现柠檬酸钠改性沸石同步去除水溶液中低浓度氨氮、硝态氮和COD的效果远高于原天然沸石.  相似文献   

7.
由于二氧化氯具有高效、广谱的灭菌能力且绿色环保,二氧化氯消毒剂以溶液形式被广泛应用。针对在水体消毒中,对于气态二氧化氯的应用相对较少的问题,以改性沸石为载体,亚氯酸钠为二氧化氯前体,硝酸铁、硝酸铜为活化剂,制备出一种质优价廉的缓释型二氧化氯除菌卡。充分利用气态二氧化氯渗透性和穿透性强的特点,依靠空气中水蒸气和二氧化碳与亚氯酸钠反应,实现二氧化氯的稳定释放。并进一步探究了沸石改性工艺、种类和粒径,亚氯酸钠和活化剂浓度等对二氧化氯释放速率的影响。确定了最佳粒径为1~2 mm,最佳焙烧温度为500℃,浸泡沸石的最佳溶液是浓度为18%的现配亚氯酸钠溶液。硝酸铜和硝酸铁混合活化剂浓度为0.003 mol/L。所制备的除菌卡有效期可达40天。  相似文献   

8.
以粉煤灰为原料制取絮凝剂PAFCS和改性粉煤灰吸附剂,联合处理苯胺废水.结果表明,投加PAM使去除率得到提高,去除率分别达到COD 60.0%、色度33.3%、浊度98.8%.改性粉煤灰的浓度100g/L时,去除率分别为COD 80.0%、色度93.3%,而浊度增加了约2倍.出水符合"污水综合排放标准"(GB8978-1996)一级排放标准.  相似文献   

9.
对高岭土微球上合成的L沸石进行改性,降低其氧化钾含量,提高其硅铝比.对离子交换时的硫酸铵量、温度、时间进行了优化,考察了焙烧方式对硅铝比和结晶度的影响,并将离子交换、柠檬酸处理和水蒸气焙烧相结合以提高沸石的硅铝比.结果表明,离子交换时最佳的反应条件为沸石:水:硫酸铵比例为1g:10mL:1g,反应温度80℃,反应时间2h.离子变换结合水蒸气焙烧能有效提高沸石的硅铝比,但产物的结晶度有所降低,焙烧时进行程序井温对结晶度的保持没有效果.离子交换、柠檬酸处理结合水热焙烧能在保持晶体结构完整的同时显著提高沸石的硅铝比,柠檬酸浓度为0.10 mol/L时,三交三柠三焙(E)样品结晶度为82%,硅铝比达到了13.60.  相似文献   

10.
UV/H_2O_2/草酸铁络合物体系在靛红染料废水处理的应用   总被引:5,自引:0,他引:5  
在紫外光照射下,以草酸铁络合物/H2O2作光氧化剂,对水溶性染料靛红进行了光氧化脱色试验研究.结果表明,在室温25℃,pH=3,Fe(Ⅲ)/C2O42-=0.10 mmol.L-1/0.30 mmol.L-1,H2O2为100 mg/L条件下,光照30 m in后,质量浓度为30 mg/L的靛红染料溶液的脱色率达到98.5%,COD去除率达到54.4%  相似文献   

11.
采用阳极氧化的方法在钛基体上得到TiO2纳米管,通过氧化铜的掺杂对其进行改性.基于其光催化氧化机理,结合分光光度法,建立CuO/TiO2-K2Cr2O7协同光催化氧化体系,用以简便测定水样的COD值.研究结果表明:电沉积时间200s、煅烧温度450℃、K2Cr2O7初始物质的量浓度0.02mol/L、pH1、反应温度60℃、反应时间15min为最佳实验条件;COD在10~300mg/L范围内与吸光度变化值呈较好的线形关系,其用于实际水样的测定效果良好,相对误差在5%以内.  相似文献   

12.
以巯基乙酸为稳定剂在水介质中直接合成了具有独特光谱性质的掺杂型硫化锌量子点(ZnS:Mn),利用硼氢化钠将牛血清白蛋白(BSA)的二硫键还原,将其修饰于量子点表面制得ZnS:Mn-dBSA量子点,以提高量子点的发光效率和稳定性。在优化实验条件下,Cu2+的加入使ZnS:Mn-dBSA体系的荧光产生强烈猝灭作用,据此建立了测定Cu2+的新方法,其线性范围为4.0×10-6~7.4×10-5mol.L-1,方法检测下限为2.87×10-7mol.L-1,应用于自来水中Cu2+的测定,回收率为93%~107%。  相似文献   

13.
硫酸铝浸渍活性氧化铝球(AIAA)是饮水除氟领域常用的吸附剂,它对氟的吸附性能受各种因素的影响。静态吸附通过改变AIAA质量与氟溶液体积比(m(AIAA):V)(2~40 g.L-1)、氟的质量浓度(ρ(F))(2~100 mg.L-1)、pH值(4~10)、温度(11~33℃)和时间等实验参数,研究这些因素对AIAA吸附除氟的影响。在11~33℃的温度范围内、pH值变化为4~10之间时,当m(AIAA):V为20 g.L-1,3 h内处理ρ(F)为10 mg.L-1水溶液其氟的去除率可达90%以上,足以保证其满足饮用水的含氟标准。利用Langmuir和Freundlich模型对吸附数据进行了拟合研究,结果表明:在ρ(F)为2~100 mg.L-1、pH=5~10、温度11~33℃范围内,Langmuir线性拟合模型是最优拟合方式;而当溶液氟质量浓度为2~1 000 mg.L-1或2~100 mg.L-1且pH为4时,Freundlich非线性拟合模型是最优拟合方式。AIAA吸附容量随溶液氟质量浓度升高、pH降低及温度升高逐渐增加。  相似文献   

14.
一株光合细菌的鉴定及其处理大豆加工废水试验   总被引:1,自引:0,他引:1  
为进一步明晰从土壤中提取的一株光合细菌的生理生化特性,并实现利用其处理污水、达到资源化的目标,对此株光合细菌进行了菌种、形态以及生理生化鉴定,并考察了其在不同条件下降解人工配制的大豆加工废水的效果.结果表明,此株菌为球形红假单胞菌(Rhodopseudomonas sphaeroides,命名为Z08).在初始COD质...  相似文献   

15.
何方    冯菊红    葛燕丽    胡学雷   《武汉工程大学学报》2017,39(4):353-358
以硝酸钡、硝酸铁和硝酸钴为原料,采用共沉淀法制备了Co2Z型铁氧体(Ba3Co2Fe24O41)粉末,制备工艺的最佳条件为溶液pH=12、煅烧温度为1 300 ℃和煅烧时间为4 h. 通过X射线衍射仪、扫描电子显微镜对产物晶型和形貌进行了表征. 考察了Co2Z型铁氧体对溶液中亚甲基蓝的吸附作用. 结果表明:铁氧体质量为0.10 g、溶液pH=12、亚甲基蓝的初始质量浓度为10 mg/L时,铁氧体对亚甲基蓝的吸附率可达89.49%,最大吸附量为9.181 mg/g. Co2Z型铁氧体(Ba3Co2Fe24O41)对亚甲基蓝有较好的吸附作用,可用于亚甲基蓝染料废水处理.  相似文献   

16.
目的研究高铁酸盐对炼油废水的处理效果,确定适宜的pH值、高铁酸盐投加量、氧化反应时间等参数,分析高铁酸盐的稳定性.方法采用次氯酸盐氧化法制备高铁酸钠溶液,并用其试验处理含有高COD值的炼油废水.设计单因素试验,三因素分别为pH值、氧化反应时间、高铁酸盐投加量.而后通过正交试验确定最佳的处理条件.结果高铁酸盐对炼油废水的COD去除率达到50%以上,正交试验结果显示处理最佳条件为:初始pH值为9.0,氧化反应时间30 min,高铁酸盐投加量5.00 mmol·L-1.制备高铁酸钠的一个试验条件为:70.0 mL的次氯酸钠、50.0 g氢氧化钠、18.75 g的硝酸铁固体,所制备的高铁酸钠浓度可达到0.027 mol·L-1.结论高铁酸盐对炼油废水有很好的氧化混凝作用,可应用于水处理工艺的预处理单元.  相似文献   

17.
采用室温固相制备前驱物再热处理和室温一步固相法两种方法制备纳米CuO.室温固相制备前驱物再热处理的方法以Cu(CH3COO)2·2H2O和H2C2O4·2H2O为原料,通过室温固相反应制备前驱物,再对前驱物进行热处理制备产物,研究了研磨时间、热处理温度及时间对产物的影响;室温一步固相法以CuCl2·2H2O和NaOH为原料,以PEG-400为表面活性剂,通过室温固相反应制备产物,研究了PEG-400用量对产物的影响.通过XRD对产物进行表征.结果表明:室温制备前驱物再热处理的方法制备的纳米CuO产率高,平均粒径小,最好的制备工艺为:对反应物研磨30min,将得到的前驱物在350℃热处理1h,得到的纳米CuO平均粒径为27.06nm,产率为93.16%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号