首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of Taylor bubbles and resulting bubble lengths were studied in a ID vertical tube for air-water and air-octane systems. In the co-flow tube/nozzle arrangement two nozzle sizes were used as gas inlets. Superficial velocities varied between 0.001- for the liquid and 0.002- for the gas. Three different mechanisms of initial bubble formation were observed. Of the three mechanisms, mechanism 3 is periodic (with period consisting of a bubble and a liquid slug), reproducible and can be simply modelled. After initial bubble formation further modifications may occur in the formed bubble size by coalescence or pairing. Bubble pairing is encouraged by smaller nozzles and liquid flow rates, while coalescence is observed only for cases where non-Taylor bubbles form initially.Two simple models have been proposed, the first predicts the size of the Taylor bubbles formed by mechanism 3 while the second attempts to predict the condition for bubble pairing to occur. Reasonable agreement with experimental results validates the predictions of the first model for a strong dependence of the volume of Taylor bubbles formed on the gas and liquid flow rates, a moderate dependence on nozzle diameter and a weak dependence (if at all) on the surface tension of the liquid used. Mismatch with the experimental results is caused (at least in part) by the experimental setup where there was no perfect axial alignment of the gas inlet. The experiments also suffered from problems at the outlet at low flow rates where smooth bubble disengagement could not be ensured for long Taylor bubbles. The second model for pairing predicts its occurrence for concentric tube/nozzle arrangements as a function of flow rates and channel diameters. The model over-predicted the range of liquid flow rates at which pairing was observed experimentally, but it captured the form of the boundary between different bubble volume modification mechanisms when represented on superficial velocity graphs.  相似文献   

2.
The flow in the nose region and in the annular film around individual Taylor bubbles rising through stagnant and co-current vertical columns of liquid were studied, employing particle image velocimetry (PIV) and pulsed shadowgraphy techniques (PST) at the same time. The combined techniques enabled simultaneous determination of the bubble shape and the velocity profiles in the liquid film. Experiments were performed with water and aqueous glycerol solutions in a wide range of viscosities , in an acrylic column of 32 mm ID.Values for the distance ahead of the nose in which the flow is disturbed by the presence of the bubble are presented for the conditions studied. The bubble shapes in the nose region are compared with Dumitrescu's shape for potential flow. The velocity profiles show that after the nose region the liquid begins to accelerate downwards, and at a certain distance from the bubble nose the velocity profile and the liquid film thickness stabilise. The liquid film acquires characteristics of a free-falling film. Values of the developing length and film thickness are reported for the experimental conditions studied. Average velocity profiles in the fully developed film are also presented. A critical Reynolds number of around 80 (based on the mean absolute velocity in the liquid film and on the film thickness) is reported for the transition from laminar to turbulent regime. Shear stress profiles (in the fully developed film) are also provided.The data reported are relevant for the validation of numerical codes in slug flow.  相似文献   

3.
This experimental study reports the influence of low-frequency vibrations, in the range of 60-400 Hz, on the rise of single air bubbles and slugs injected into two columns (of diameters 0.014 and 0.05 m), filled with liquids of varying densities (in the range 889- and viscosities (in the range 0.48-1.4 Pa s). For a specified set of operating conditions the bubbles or slugs can be made to levitate, i.e. held stationary in the column. The height of the liquid, h, above the position at which the gas bubble is levitated was determined for a wide range of operating conditions (vibration frequency and amplitude, operating pressure, column diameter, liquid density and viscosity). The experimentally determined values of h are in good agreement with the theoretical model of Baird [1963a. Resonant bubbles in a vertically vibrating column. Canadian Journal of Chemical Engineering 41, 52-55].  相似文献   

4.
The flow in the wake and near-wake regions of individual Taylor bubbles rising through stagnant and co-current vertical columns of Newtonian liquids was studied, employing simultaneously particle image velocimetry (PIV) and pulsed shadowgraphy techniques (PST). Experiments were made with water and aqueous glycerol solutions covering a wide range of viscosities , in an acrylic column of 32 mm ID.Different wake structures (laminar, transitional and turbulent) are identified, in both stagnant and co-current flow conditions. In stagnant liquids, the wake flow pattern is only dependent on the dimensionless group Nf. The different types of wakes obtained are in accordance with the critical Nf numbers proposed in previous works. For co-current flow conditions, the flow patterns in the wake depend on the Reynolds number based on the relative (to the bubble) average velocity of the upward liquid flow, the laminar-transitional and transitional-turbulent limits being for the first time experimentally determined.The wake flow patterns are quantified by means of instantaneous and average flow fields. Values for the wake length and wake volume are also presented and compare well with correlations found in literature. Study of the flow in the near-wake zone enabled determination of the distance needed to recover the undisturbed liquid velocity profile.The detailed study of the flow in the wake and near-wake regions is an important contribution to better understanding the interaction and coalescence mechanisms between Taylor bubbles.The data reported are relevant to the validation of numerical simulation codes in the vertical slug flow regime.  相似文献   

5.
An accurate and fast simulation of large-scale gas/liquid contact apparatusses, such as bubble columns, is essential for the optimization and further development of many (bio)chemical and metallurgical processes. Since it is not feasible to simulate an entire industrial-scale bubble column in full detail from first principles (direct numerical simulations), higher-level models rely on algebraic closure relations to account for the most important physical phenomena prevailing at the smallest length and time scales, while keeping computational demands low. The most important closure for describing rising bubbles in a liquid is the closure for the drag force, since it dominates the terminal rise velocity of the bubbles.Due to the very high gas loadings used in many industrial processes, bubble–bubble (or ‘swarm’) interactions need to be accounted for in the drag closure. An advanced front-tracking model was employed, which can simulate bubble swarms up to 50% gas hold-up without the problem of (numerical) coalescence. The influence of the gas hold-up for mono-disperse bubble swarms with different bubble diameters (i.e. Eötvös numbers) was quantified in a single drag correlation valid for the intermediate to high Reynolds numbers regime . Also the physical properties of the liquid phase were varied, but the simulation results revealed that the drag force coefficient was independent of the Morton number. The newly developed correlation has been implemented in a larger-scale model, and the effect of the new drag closure on the hydrodynamics in a bubble column is investigated in a separate paper (Lau et al., this issue).  相似文献   

6.
Liquid flow around Taylor bubbles and the motion of bubble interface in a rectangular microchannel etched on a microfluidic chip were investigated using a three-dimensional particle tracking method. The Taylor bubbles were generated by releasing the dissolved air in working the liquid (water) through heating the microfluidic chip to 35–55 °C and had low velocities (15–1500 μm/s). Three-dimensional velocity distributions of liquid recirculation flows surrounding the Taylor bubble head and tail were obtained by tracking submicron fluorescent particles seeded in the working liquid and the motion of the bubble interface was analyzed by monitoring the motions of the particles attached on the bubble interface. The high velocity film flow through the microchannel corners acted as a liquid jet in front of bubble head and drainage into the corners behind the bubble tail to drive the liquid recirculation flows. The bubble interface near the microchannel corners was also moved by the strong liquid shear induced from the high velocity liquid flow in the microchannel corners. This high velocity liquid flow through the corners could be considered to be driven by the pressure drop over the Taylor bubble. The pressure drop resulted from the decrease of bubble surface mobility due to tracer surfactant in the gas–liquid interface.  相似文献   

7.
Computational Fluid Dynamics (CFD) is used to investigate mass transfer from Taylor bubbles to the liquid phase in circular capillaries. The liquid phase volumetric mass transfer coefficient kLa was determined from CFD simulations of Taylor bubbles in upflow, using periodic boundary conditions. The separate influences of the bubble rise velocity, unit cell length, film thickness, film length, and liquid diffusivity on kLa were investigated for capillaries of 1.5, 2 and diameter. The mass transfer from the Taylor bubble is the sum of the contributions of the two bubble caps, and the film surrounding the bubble. The Higbie penetration model is used to describe the mass transfer from the two hemispherical caps. The unsteady-state diffusion model of Pigford is used to describe the mass transfer to the downward flowing liquid film. The developed model for kLa is in good agreement with the CFD simulated values, and provides a practical method for estimating mass transfer coefficients in monolith reactors.  相似文献   

8.
This paper describes two-phase flow pattern and pressure drop characteristics during the absorption of CO2 into water in three horizontal microchannel contactors which consist of Y-type rectangular microchannels having hydraulic diameters of 667, 400 and , respectively. With the help of a high-speed photography system, flow patterns such as bubbly flow, slug flow (including two sub-regimes, Taylor flow and unstable slug flow), slug-annular flow, churn flow and annular flow were observed in these microchannels. The applicability of the currently available correlations for describing flow pattern transitions in microchannels has been examined. Generally, the predicting performance of these correlations deteriorates as the channel diameter further reduces. Toward solving this discrepancy, an empirical correlation based on the superficial Weber numbers was developed to interpret the transition from Taylor flow to unstable slug flow in three microchannels. Taylor bubble formation process in microchannels was found to be in the squeezing regime at lower superficial liquid velocities (Ca ranging from 0.0019 to 0.029) while the transition to the dripping regime was observed at the highest superficial liquid velocity of 1.0 m/s. Lengths of Taylor bubbles formed in the squeezing regime can be well represented by the scaling relation proposed by Garstecki et al. [Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 6, 437-446]. For flow patterns including slug-annular flow, annular flow and churn flow, a simple analysis based on the separated flow model has been performed in order to reveal the observed effect of the superficial liquid velocity on two-phase frictional multiplier in the present microchannels. Then, reasonable correlations for the prediction of two-phase frictional pressure drop under these flow patterns were suggested.  相似文献   

9.
毛细管内气液Taylor流动的气泡及阻力特性   总被引:1,自引:1,他引:1       下载免费PDF全文
张井志  李蔚 《化工学报》2015,66(3):942-948
采用相对坐标系方法,研究毛细管(d 2mm)内充分发展垂直上升气液Taylor流动,分析两种工作介质下Taylor气泡的形状、上升速度、液膜厚度以及压降特性。结果表明:随着两相表观速度(Vtp)增大,Taylor气泡长度增大,气泡尾部曲率半径增大。气泡长度及内部回流区随着气泡体积分数(ξg)增大而增大,量纲1液膜厚度与气泡上升速度与毛细数(Ca)正相关,模拟结果与经验公式吻合较好。摩擦阻力因子(fc)随Vtpξg的增大而降低,N2/乙二醇为工质的Taylor流动fc低于单相情况,而N2/水为工质的Taylor流动fc高于单相情况。Kreutzer等的流型依赖公式以及Lockhart等的分离模型可较好预测本文的两相压降,模拟结果与预测值的误差在±10%以内,常规通道所推荐C 5仍然适用于本文毛细管情况。  相似文献   

10.
This work studies the effect of the liquid properties and the operating conditions on the interactions between under-formation bubbles in a cell equipped with two adjacent micro-tubes (i.d. ) for the gas injection, placed 210, 700 and apart. This set-up simulates, though in a simplified manner, the operation of the porous sparger in a bubble column, and it is used to study the bubble interactions observed on the sparger surface. Various liquids covering a wide range of surface tension and viscosity values are employed, while the gas phase is atmospheric air. A fast video recording technique is used both for the visual observations of the phenomena occurring onto the tubes and for the bubble size measurements. The experiments reveal that the interactions between under-formation bubbles as well as the coalescence time depend strongly on the liquid properties, the distance between the tubes and the gas flow rate. Two correlations, which can be found helpful for the bubble column design, have also been formulated and are in good agreement with the available experimental data.  相似文献   

11.
Numerical simulations of gas-liquid flow in a cylindrical bubble column of 400 mm in diameter at the superficial gas velocity were conducted to investigate effects of the configuration of gas distributors on hydrodynamic behaviour, gas hold-up and mixing characteristics. Eight different gas distributors were adopted in the simulation. The simulation results clearly show that the configuration of gas distributor have an important impact on liquid velocity and local gas hold-up in the vicinity of the gas distributor. Comparisons of the overall gas holdup and mixing time among different gas distributors have demonstrated that none of the adopted gas distributors was able to produce the highest interfacial area and also yield the shortest mixing time. The CFD modelling results reveal that an increase in the number of gas sparging pipes used in gas distributors is beneficial in improving the gas hold-up but is disadvantageous in reducing bubble size due to a decrease in turbulent kinetic dissipation. It has been demonstrated from the simulations that the appearance of asymmetrical flow patterns in the bubble column and the adoption of smaller gas sparging pipes for gas distributors are effective in improving the mixing characteristics.  相似文献   

12.
In the present paper, nonlinear features and analytical results for the chaotic bubbling from a submerged orifice are described. A chain of air bubbles was produced from the single orifice of in diameter and micro-convection induced by the bubble generation was recorded using hot-probe anemometer located close to the orifice. The air flow rate was varied widely from q=100 to and the aspects of bubbling were observed by high-speed video. The nonlinear analysis is performed for the time series data of hot-probe anemometer especially in the range of q=435-. The calculated largest Lyapunov exponent shows that with increase of air volume flow rate, the time period for the process of liquid flow to lose stability becomes shorter and at high air flow rate such as , it is shorter than the time period between subsequent bubbles. To explain such chaotic behaviors of bubbling, a simple model has been proposed. The model simulates the process of interaction between the elastic bubble wall and liquid. Simulation results compared well with the analytical results of experimental data. Summarizing, it is concluded that one of the reasons for chaos appearance is the nonlinear character of interaction between an elastic bubble wall and the liquid stream.  相似文献   

13.
A solution methodology is proposed for the process development and process engineering of a continuously operated jet loop bubble column including integrated external or internal steam generation for, e.g., a high-efficiency large-scale medium pressure methanol and or dimethyl ether production, or other gas to liquid Fischer-Tropsch applications.A jet loop bubble column is defined in the present process development to study the combined integration of a jet-eductor draft tube system with an upper bubble column. The major advantages resulting from the integrated jet-eductor draft tube system in large-scale bubble columns are the guidance and good mixing efficiency of the multiphase flow up to the upper part of the bubble column. Reducing the bubble column operating liquid level at about 2.5-3.0 times of the column diameter above the upper end of the draft tube results in a classical jet-eductor draft tube reactor suitable for small and or medium-scale industrial applications.Methanol synthesis is usually executed catalytically in multistage packed beds at higher pressure, e.g. 26 MPa, and about 350-, resulting in a higher plant installation and operating cost. The successful scale-up of a slurry jet loop bubble column can achieve a higher catalytic selectivity at a lower pressure and temperature , and therefore reduce the overall plant investment and production cost [Toseland, 1999. Three phase flows under extreme conditions of pressure and temperature, Part II: industrial applications, Air products and Chemicals, Inc. Presented at the A.I.Ch.E. Annual Meeting, Dallas, TX; Fan, 1999. Three phase flows under extreme conditions of pressure and temperature, Part I: fundmental characteristics, Department of Chemical Engineering, The Ohio State University. Presented at the A.I.Ch.E. Annuxal Meeting, Dallas, TX]. In addition, the separate slurry production of dimethyl ether, or even coproduction with methanol, can be a more cost-effective process than the classical methanol dehydration process.The new Modified Slurry Process© for large-scale methanol and or dimethyl ether production is presented including internal or external heat exchanger location for steam production.A process concept is developed of a Large Scale Slurry Jet Loop Bubble Column© with external separator, auxiliary internal heat exchanger equipment and high-efficiency gas-liquid slurry jet-eductor mixing system including draft tubes and an upper bubble column. In addition, as comparison a simplified concept is discussed for a small-to-medium-scale slurry jet loop reactor including external steam production and bottom nozzle jet-eductor installation without the presence of an upper bubble column.The basic geometrical parameters of the proposed slurry jet loop bubble column and jet loop reactor are discussed. The influence of the selected geometrical parameters on the gas holdup, interfacial area and mixing is analyzed. Information about catalyst type and particle size distribution is also presented.The definition of optimal operating conditions related to the influence of the fluid dynamics and mixing on mass transfer efficiency and also information for the minimum required power input per unit volume for startup or stable reactor operation are discussed.A simplified estimation method is presented for the expected axial temperature difference across the overall length of the jet bubble column, and also the required heat transfer area of a new construction-type internal compact heat exchanger for efficient reactor cooling and operation.Scale-up is possible for large diameter jet loop bubble columns, typically up to 5 m diameter and 60 m height, including continuous three-phase slurry operation at higher power input and interfacial area, for more efficient synthesis gas absorption and reaction than in classical slurry bubble columns. Integration of suitable designed sieve trays can further guarantee an efficient operation of the lower jet loop draft tube system at higher column diameters and also achieve an efficient reactor operation in the upper bubble column section.  相似文献   

14.
The dynamic environment within the bioreactor and in the purification equipment is known to affect the activity and yield of enzyme production. In the present work, the effect of hydrodynamic flow parameters and τN,max) and interfacial flow parameters ( and ) on the activity of lipase has been comprehensively investigated in bubble column reactors. Lipase solution was subjected to hydrodynamic flow parameters in 0.15 and 0.385 m i.d. bubble column reactors over a wide range of superficial gas velocity (0.01<VG<0.4-). The flow parameters were estimated using an in-house CFD simulation code based on k-ε approach. The extent of lipase deactivation in both the columns was found to increase with an increase in hydrodynamic and interfacial flow parameters. However, at equal value of any of these parameters, the extent of deactivation was different in the two columns. The rate of deactivation was found to follow first order kinetics. An attempt has been made to develop rational correlations for the extent of deactivation as well as for the deactivation constant. The rate of deactivation was found to be depending on the average turbulent normal stress and interfacial flow parameters such as bubble diameter and bubble rise velocity.  相似文献   

15.
The lift force acting on bubbles in a swarm has been estimated by analyzing the instantaneous velocity-time data obtained using LDA in a cylindrical bubble column. Phase distinction was achieved through the multiresolution analysis of the velocity-time data. Several important issues related to the transverse motion of bubbles subjected to a shear field have been discussed quantitatively. The actually measured bubble sizes, the respective slip velocity values in transverse and axial directions and the local shear rates (γ) enabled the verification of known formulations for the lift coefficient (CL) for bubbles. At many locations in the column the radial flux of the gas phase by turbulent dispersion and the radial slip were estimated. The radially inward movement of bubbles from low to high axial velocity (from column wall to center, i.e., CL<0) was observed at most of the measurement locations. The local lift coefficient was estimated using the transverse drag force and the values support the results from the material balance approach. The estimated CL values showed a wide variation over the column cross-section.  相似文献   

16.
Three bubble column diameters (D=10.2, 15.2, and 32.1 cm) are employed to study the scale-up effect on gas holdup in air-water and air-water-cellulose fiber (hardwood, softwood, and BCTMP) systems. The effect of column diameter depends on flow regime and fiber mass fraction. When , gas holdup decreases with increasing column diameter for the transitional and heterogeneous flow regime, and column diameter effects are negligible in the homogeneous flow regime. When , gas holdup is only affected by column diameter in the transitional flow regime for an air-water system and low fiber mass fraction suspensions (C?0.25%); column diameter effects disappear at medium fiber mass fractions (e.g., C=0.8%) but are significant at high fiber mass fractions (e.g., C=1.4%).  相似文献   

17.
A new correction term was developed which allows the classical penetration theory to be applied successfully to kLa data obtained from oblate ellipsoidal bubbles formed in bubble columns operated in the homogeneous regime at various pressures . The correction factor is a function of both the Eötvös number Eo and dimensionless gas density ratio. The new correlation was compared with literature kLa data in 18 pure organic liquids, 14 adjusted liquid mixtures and tap water. In some of the liquids (tetralin, xylene and ethanol) not only air but also other gases (nitrogen, helium and hydrogen) were used. In total, 263 experimental kLa points are fitted with an average relative error of 10.4%.In the theoretical approach for the kLa prediction, the gas-liquid contact time (used in the penetration theory) is defined as the ratio of bubble surface to the rate of surface formation. All further calculations are based on the geometrical characteristics (bubble length and height) of an oblate ellipsoidal bubble. It was found that the new correction factor fc gradually reduces with the increase of both superficial gas velocity uG and gas density ρG (operating pressure P).  相似文献   

18.
We investigated the effect of bubble size on the drift-flux parameters at low liquid flow conditions by measuring the radial profiles of void fraction and phase velocities in a vertical bubbly pipe flow of diameter and height . To study the effect of the bubble size we used two different types of bubble inlets. We measured the local bubble fraction and velocity Ug by using single and four-point-optical fibre probes, and we used Laser Doppler Anemometry to determine the liquid velocity Ul. The distribution parameter C0 and the weighted mean drift velocity |Udrift| were directly computed from the local measurements at a height on our experimental set-up. Both parameters were influenced by the bubble size. Provided no liquid flow reversal occurred at the near wall region, the distribution parameter reached a below unity minimum plateau value of C0=0.95 for wall peaking void fraction profiles. At low liquid input conditions both the liquid input and bubble size had an influence on the distribution parameter. Extreme values such as C0>2 were measured. From these measurements we developed models for the drift-flux parameters to take into account the effect of bubble size and input-flow conditions for our intermediate pipe diameter value. These models were tested and validated with separately collected experimental data.  相似文献   

19.
The characteristics of gas bubbles in a 5 cm diameter bubble column equipped with a single orifice of 1,3 or 5 mm diameter were investigated under system pressure of 0.1-15 MPa. The formation of gas bubbles was strongly affected by the system pressure. Under high pressures a dispersed gas jet was formed at gas velocities where spherical gas bubbles would have been formed at atmospheric pressure. The critical gas velocity between the bubbling regime and the jetting regime was correlated with the liquid phase Weber number and the gas phase Reynolds number based on the gas velocity at the orifice. Bubble size and gas holdup in the main part of the bubble column were also affected by the bubble formation pattern at the distributor  相似文献   

20.
Flow properties of gas phase reactants such as size, rising velocity and frequency were investigated in simulated three-phase slurry bubble column reactors. Effects of gas velocity, reactor pressure, liquid viscosity, solid content in the slurry phase and column diameter on the flow properties of a gas reactant were determined. The multiple effects of operating variables on the bubble properties were well visualized by means of contour maps. The effects of operating variables on the flow properties of bubbles changed with changing column diameter of the reactor. The size, rising velocity and frequency of reactant gas bubbles were well correlated in terms of operating variables including column diameter of the reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号