首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two benchmark problems in structural boundary design are solved using the spectral level set methodology, which is a new approach to topology optimization of interfaces. This methodology is an extension of the level set methods, in which the interface is represented as the zero level set of a function. According to the proposed formulation, the Fourier coefficients of that function are the design variables describing the interface during the topology optimization. An advantage of the spectral level set methodology, in the case of a sufficiently regular interface, is to admit an upper bound error which is asymptotically smaller than the one for nonadaptive spacial discretizations of the level set function. Other advantages include the nucleation of holes in the interior of the interface and the avoidance of checkerboard-like designs. The theoretical framework of the methodology is presented and estimates on its convergence rate are discussed. The numerical applications consist in the design of short and long cantilevers subject to a vertical concentrated load opposite to the fixed end. The goal is to maximize the structural stiffness subject to a solid volume constraint. The zero level set of the level set function defines the structural boundary.  相似文献   

2.
A heterogeneous object is referred to as a solid object made of different constituent materials. The object is of a finite collection of regions of a set of prescribed material classes of continuously varying material properties. These properties have a discontinuous change across the interface of the material regions. In this paper, we propose a level-set based variational approach for the design of this class of heterogeneous objects. Central to the approach is a variational framework for a well-posed formulation of the design problem. In particular, we adapt the Mumford-Shah model which specifies that any point of the object belongs to either of two types: inside a material region of a well-defined gradient or on the boundary edges and surfaces of discontinuities. Furthermore, the set of discontinuities is represented implicitly, using a multi-phase level set model. This level-set based variational approach yields a computational system of coupled geometric evolution and diffusion partial differential equations. Promising features of the proposed method include strong regularity in the problem formulation and inherent capabilities of geometric and material modeling, yielding a common framework for optimization of the heterogeneous objects that incorporates dimension, shape, topology, and material properties. The proposed method is illustrated with several 2D examples of optimal design of multi-material structures and materials.  相似文献   

3.
In this brief note, we present an approach that combines the three classical techniques in structural optimization, i.e. the boundary variation and the topological and the homogenization methods. As a first test of this method, we apply it to the compliance opti-mization in .  相似文献   

4.
Based on the First-order Shear Deformation Theory (FSDT) this paper focuses on the dynamic behavior of moderately thick functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal. These constituents are graded through the thickness, from one surface of the shell to the other. A generalization of the power-law distribution presented in literature is proposed. Two different four-parameter power-law distributions are considered for the ceramic volume fraction. Some material profiles through the functionally graded shell thickness are illustrated by varying the four parameters of power-law distributions. For the first power-law distribution, the bottom surface of the structure is ceramic rich, whereas the top surface can be metal rich, ceramic rich or made of a mixture of the two constituents and on the contrary for the second one. Symmetric and asymmetric volume fraction profiles are presented in this paper. The homogeneous isotropic material can be inferred as a special case of functionally graded materials (FGM). The governing equations of motion are expressed as functions of five kinematic parameters, by using the constitutive and kinematic relationships. The solution is given in terms of generalized displacement components of the points lying on the middle surface of the shell. The discretization of the system equations by means of the Generalized Differential Quadrature (GDQ) method leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. Numerical results concerning six types of shell structures illustrate the influence of the power-law exponent, of the power-law distribution and of the choice of the four parameters on the mechanical behaviour of shell structures considered.  相似文献   

5.
A new topology optimization using adaptive inner-front level set method is presented. In the conventional level set-based topology optimization, the optimum topology strongly depends on the initial level set due to the incapability of inner-front creation during the optimization process. In the present work, in this regard, an algorithm for inner-front creation is proposed in which the sizes, the positions, and the number of new inner-fronts during the optimization process can be globally and consistently identified. In the algorithm, the criterion of inner-front creation for compliance minimization problems of linear elastic structures is chosen as the strain energy density along with volumetric constraint. To facilitate the inner-front creation process, the inner-front creation map is constructed and used to define new level set function. In the implementation of inner-front creation algorithm, to suppress the numerical oscillation of solutions due to the sharp edges in the level set function, domain regularization is carried out by solving the edge smoothing partial differential equation (smoothing PDE). To update the level set function during the optimization process, the least-squares finite element method (LSFEM) is adopted. Through the LSFEM, a symmetric positive definite system matrix is constructed, and non-diffused and non-oscillatory solution for the hyperbolic PDE such as level set equation can be obtained. As applications, three-dimensional topology optimization of shell structures is treated. From the numerical examples, it is shown that the present method brings in much needed flexibility in topologies during the level set-based topology optimization process.  相似文献   

6.
The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson’s ratio.  相似文献   

7.
8.
This paper presents a minimum void length scale control method for structural topology optimization. Void length scale control has been actively investigated for decades, which intends to ensure the topology design manufacturable given the machining tool access. However, only a single lower bound has been applied in existing methods, which does not fit the multi-stage rough-to-finish machining. To fix this issue, the proposed minimum void length scale control method employs double lower bounds which corresponds to the rough and finish machining operations, respectively. This method has been implemented under the level set framework. For technical details, the rough machining lower bound is satisfied by developing a signed distance-related constraint, which ensures enough space for the rough machining tool movement and thus, guarantees the machining efficiency. The finish machining lower bound is addressed through the curvature flow control, which ensures the small features manufacturable and also a good finish dimension and surface. Through a few numerical case studies, it is proven that the minimum void length scale can be effectively controlled without sacrificing much of the structural performance.  相似文献   

9.
This paper deals with the representation and process planning for solid freeform fabrication (SFF) of 3D functionally graded material (FGM) objects. A novel approach of representation and process planning for SFF of FGM objects, termed as equal distance offset (EDO), is proposed. In EDO, a neutral arbitrary 3D CAD model is adaptively sliced into a series of 2D layers. Within each layer, 2D material gradients are designed and represented via dividing the 2D shape into several sub-regions enclosed by iso-composition contours. If needed, the material composition gradient within each of the sub-regions can be further specified by applying the equal distance offset algorithm to each sub-region. Using this approach, an arbitrary-shaped 3D FGM object with linear or non-linear composition gradients can be represented and fabricated via suitable SFF machines.  相似文献   

10.
An application of topology optimization to design viscoelastic composite materials with elastic moduli that soften with frequency is presented. The material is a two-phase composite whose first constituent is isotropic and viscoelastic while the other is an orthotropic material with negative stiffness but stable. A concept for this material based on a lumped parameter model is used. The performance of the topology optimization approach in this context is illustrated using three examples.  相似文献   

11.
Note on topology optimization of continuum structures including self-weight   总被引:8,自引:3,他引:5  
This paper proposes to investigate topology optimization with density-dependent body forces and especially self-weight loading. Surprisingly the solution of such problems cannot be based on a direct extension of the solution procedure used for minimum-compliance topology optimization with fixed external loads. At first the particular difficulties arising in the considered topology problems are pointed out: non-monotonous behaviour of the compliance, possible unconstrained character of the optimum and the parasitic effect for low densities when using the power model (SIMP). To get rid of the last problem requires the modification of the power law model for low densities. The other problems require that the solution procedure and the selection of appropriate structural approximations be revisited. Numerical applications compare the efficiency of different approximation schemes of the MMA family. It is shown that important improvements are achieved when the solution is carried out using the gradient-based method of moving asymptotes (GBMMA) approximations. Criteria for selecting the approximations are suggested. In addition, the applications also provide the opportunity to illustrate the strong influence of the ratio between the applied loads and the structural weight on the optimal structural topology.  相似文献   

12.
By means of continuous topology optimization, this paper discusses the influence of material gradation and layout in the overall stiffness behavior of functionally graded structures. The formulation is associated to symmetry and pattern repetition constraints, including material gradation effects at both global and local levels. For instance, constraints associated with pattern repetition are applied by considering material gradation either on the global structure or locally over the specific pattern. By means of pattern repetition, we recover previous results in the literature which were obtained using homogenization and optimization of cellular materials.  相似文献   

13.
The purpose of this paper was to study the layout design of the components and their supporting structures in a finite packing space. A coupled shape and topology optimization (CSTO) technique is proposed. On one hand, by defining the location and orientation of each component as geometric design variables, shape optimization is carried out to find the optimal layout of these components and a finite-circle method (FCM) is used to avoid the overlap between the components. On the other hand, the material configuration of the supporting structures that interconnect components is optimized simultaneously based on topology optimization method. As the FE mesh discretizing the packing space, i.e., design domain, has to be updated itertively to accommodate the layout variation of involved components, topology design variables, i.e., density variables assigned to density points that are distributed regularly in the entire design domain will be introduced in this paper instead of using traditional pseudo-density variables associated with finite elements as in standard topology optimization procedures. These points will thus dominate the pseudo-densities of the surrounding elements. Besides, in the CSTO, the technique of embedded mesh is used to save the computing time of the remeshing procedure, and design sensitivities are calculated w.r.t both geometric variables and density variables. In this paper, several design problems maximizing structural stiffness are considered subject to the material volume constraint. Reasonable designs of components layout and supporting structures are obtained numerically.  相似文献   

14.
Topology optimization problems for compliant mechanisms using a density interpolation scheme, the rational approximation of material properties (RAMP) method, and a globally convergent version of the method of moving asymptotes (GCMMA) are primarily discussed. First, a new multi-objective formulation is proposed for topology optimization of compliant mechanisms, in which the maximization of mutual energy (flexibility) and the minimization of mean compliance (stiffness) are considered simultaneously. The formulation of one-node connected hinges, as well as checkerboards and mesh-dependency, is typically encountered in the design of compliant mechanisms. A new hybrid-filtering scheme is proposed to solve numerical instabilities, which can not only eliminate checkerboards and mesh-dependency efficiently, but also prevent one-node connected hinges from occurring in the resulting mechanisms to some extent. Several numerical applications are performed to demonstrate the validity of the methods presented in this paper.  相似文献   

15.
In this paper, we implement the extended finite element method (X-FEM) combined with the level set method to solve structural shape and topology optimization problems. Numerical comparisons with the conventional finite element method in a fixed grid show that the X-FEM leads to more accurate results without increasing the mesh density and the degrees of freedom. Furthermore, the mesh in X-FEM is independent of the physical boundary of the design, so there is no need for remeshing during the optimization process. Numerical examples of mean compliance minimization in 2D are studied in regard to efficiency, convergence and accuracy. The results suggest that combining the X-FEM for structural analysis with the level set based boundary representation is a promising approach for continuum structural optimization.  相似文献   

16.
We consider a problem of minimizing a pressure drop due to a flow of a fluid or gas through an interconnected system of pipes. We show that simultaneous optimization of pipe diameters and nodal positions (topology and geometry optimization) results for fluid networks in a better optimization strategy than traditionally used ground-structure approach (topology optimization only), as opposed to the linear truss case. We also show how the results for linear flow networks can be easily carried out to nonlinear transient and turbulent cases. Stating the optimality conditions for the latter types of flow, we give an alternative derivation of generalized Murray’s law, which is well-known in physiology. We illustrate our theoretical findings with numerical examples.  相似文献   

17.
The problem of minimizing the maximum temperature of a structure insulated by a functionally graded metal foam insulation under transient heat conduction is studied. First, the performance of insulation designed for steady-state conditions is compared with uniform solidity insulation. It is found that the optimum steady-state insulation performs poorly under transient conditions. Then, the maximum structural temperature of a two-layer insulation with constant solidity for each layer is minimized by varying the solidity profile for a given total thickness and mass. It is found that the cooler inner layer of the optimal design has high solidity, while the hotter outer layer has low solidity. This is in contrast to the steady-state optimum, where the solidity profile is the reverse.  相似文献   

18.
We develop a topology optimization approach to design two- and three-dimensional phononic (elastic) materials, focusing primarily on surface wave filters and waveguides. These utilize propagation modes that transmit elastic waves where the energy is contained near a free surface of a material. The design of surface wave devices is particularly attractive given recent advances in nano- and micromanufacturing processes, such as thin-film deposition, etching, and lithography, which make it possible to precisely place thin film materials on a substrate with submicron feature resolution. We apply our topology optimization approach to a series of three problems where the layout of two materials (silicon and aluminum) is sought to achieve a prescribed objective: (1) a grating to filter bulk waves of a prescribed frequency in two and three dimensions, (2) a surface wave device that uses a patterned thin film to filter waves of a single or range of frequencies, and (3) a fully three-dimensional structure to guide a wave generated by a harmonic input on a free surface to a specified output port on the surface. From the first to the third example, the resulting topologies increase in sophistication. The results demonstrate the power and promise of our computational framework to design sophisticated surface wave devices.  相似文献   

19.
This is the first part of a three-paper review of homogenization and topology optimization, viewed from an engineering standpoint and with the ultimate aim of clarifying the ideas so that interested researchers can easily implement the concepts described. In the first paper we focus on the theory of the homogenization method where we are concerned with the main concepts and derivation of the equations for computation of effective constitutive parameters of complex materials with a periodic micro structure. Such materials are described by the base cell, which is the smallest repetitive unit of material, and the evaluation of the effective constitutive parameters may be carried out by analysing the base cell alone. For simple microstructures this may be achieved analytically, whereas for more complicated systems numerical methods such as the finite element method must be employed. In the second paper, we consider numerical and analytical solutions of the homogenization equations. Topology optimization of structures is a rapidly growing research area, and as opposed to shape optimization allows the introduction of holes in structures, with consequent savings in weight and improved structural characteristics. The homogenization approach, with an emphasis on the optimality criteria method, will be the topic of the third paper in this review.  相似文献   

20.
The identification of the load surface is a key problem in solving topology optimization of continuum structures with design-dependent loads. In this paper, an element-based search scheme is introduced to identify the load surface. The load surfaces are formed by the connection of the real boundary of elements and the pressures are transferred directly to corresponding element nodes. The search scheme is very convenient to apply and is found to be efficient and effective in identifying the load surfaces. Only slight modifications to the load codes in the routine procedure are required and there is no need to calculate the sensitivities of the load with respect to the material density changes. Numerical examples are presented to demonstrate the efficiency of the boundary search scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号