首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
A technique was developed and applied to understand the mechanism of fuel oxidation in an internal combustion engine. This methodology determines the fuel and concentrations of various intermediates during the combustion cycle. A time-resolved measurement of a large number of species is the objective of this work and is achieved by the use of a sampling probe developed in-house. A system featuring an electromagnetically actuated sampling valve with internal N2 dilution was developed for sampling gases coming from the combustion chamber. Combustion species include O2, CO2, CO, NOx, fuel components, and hydrocarbons produced due to incomplete combustion of fuel. Combustion gases were collected and analyzed with the objectives of analysis by an automotive exhaust analyzer, separation by gas chromatography, and detection by flame ionization detection and mass spectrometry. The work presented was processed in a homogeneous charge compression ignition combustion mode context.  相似文献   

2.
HCCI (Homogeneous Charge Compression Ignition) has been touted for many years as the alternate technology of choice for future engines, preserving the inherent efficiency of CIDI (Compression Ignition Direct Injection) engines while significantly reducing emissions. The current direction for all published diesel HCCI research is mixture preparation using the direct injection – system, referred to as internal mixture formation. The benefit of internal mixture formation is that it utilizes an already available direct injection system. Direct injected diesel HCCI can be divided into two areas, early injection (early in the compression stroke) and late injection (usually after Top Dead Center (aTDC)). Early direct injection HCCI requires carefully designed fuel injector to minimize the fuel wall-wetting that can cause combustion inefficiency and oil dilution. Late direct injection HCCI requires a long ignition delay and rapid mixing rate to achieve the homogeneous mixture. The ignition delay is extended by retarding the injection timing and rapid mixing rate was achieved by combining high swirl with toroidal combustion-bowl geometry. There is a compromise between Direct Injection (DI) and HCCI combustion regimes. Even under ideal conditions, it can prove difficult to form a truly homogeneous charge, which leads to elevated emissions when compared to true homogenous charge combustion and also strongly contribute to the high sensitivity of the combustion phasing to external parameters. The alternative to the internal mixture formation is, predictably, external mixture formation. By introducing the fuel external to the combustion chamber one can use the turbulence intake process to create a homogeneous charge regardless of engine conditions. This eliminates the need for combustion system changes which were necessary for the internal mixture formation method. With this method, the combustion system remains fully optimized for direct injection and also capable of running in HCCI combustion mode with nearly ideal mixture preparation. The key to the external mixture formation with diesel fuel is proper mixture preparation.  相似文献   

3.
《Combustion and Flame》2014,161(2):398-404
Rapid Compression Machines (RCMs) often employ creviced pistons to suppress the formation of the roll-up vortex. However, the use of a creviced piston promotes mass transfer into the crevice when heat release takes place in the main combustion chamber. This multi-dimensional effect is not accounted for in the prevalent volumetric expansion approach for modeling RCMs. The method of crevice containment avoids post-compression mass transfer into the crevice. In order to assess the effect of the crevice mass transfer on ignition in a RCM, experiments are conducted for autoignition of isooctane in a RCM with creviced piston in the temperature range of 680–940 K and at compressed pressures of ∼15.5 and 20.5 bar in two ways. In one situation, post-compression mass transfer to the crevice is avoided by crevice containment and in other it is allowed. Experiments show that the crevice mass transfer can lead to significantly longer ignition delays. Experimental data from both scenarios is modeled using adiabatic volumetric expansion approach and an available kinetic mechanism. The simulated results show less pronounced effect of crevice mass transfer on ignition delay and highlight the deficiency of the volumetric expansion method owing to its inability to describe coupled physico-chemical processes in the presence of heat release. Results indicate that it is important to include crevice mass transfer in the physical model for improved modeling of experimental data from RCMs without crevice containment for consistent interpretation of chemical kinetics. The use of crevice containment, however, avoids the issue of mass transfer altogether and offers an alternative and sound approach.  相似文献   

4.
Compression ignition of hydrogen engines with a homogeneous pre-mixture is a promising method to enhance the thermal efficiency as well as to reduce unique NOx exhausted from the engine due to spatial reaction of the mixture. However, hydrogen gas has a relatively high self-ignition temperature. Therefore, compression ignition for a neat hydrogen-air pre-mixture is considered impossible to achieve without additives. Research on this has not yet been attempted for this reason.  相似文献   

5.
In this experimental study, hydrogen was inducted along with air and diesel was injected into the cylinder using a high pressure common rail system, in a single cylinder homogeneous charge compression ignition engine. An electronic controller was used to set the required injection timing of diesel for best thermal efficiency. The influences of hydrogen to diesel energy ratio, output of the engine and exhaust gas recirculation (EGR) on performance, emissions and combustion were studied in detail. An increase in the amount of hydrogen improved the thermal efficiency by retarding the combustion process. It also lowered the exhaust emissions. Large amounts of hydrogen and EGR were needed at high outputs for suppressing knock. The range of operation was brake mean effective pressures of 2–4 bar. The levels of HC and CO emitted were not significantly influenced by the amount of hydrogen that was used.  相似文献   

6.
In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of ‘adiabatic volume expansion’ performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation.  相似文献   

7.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

8.
Auto-ignition of fuel mixtures was investigated both theoretically and experimentally to gain further understanding of the fuel chemistry. A homogeneous charge compression ignition (HCCI) engine was run under different operating conditions with fuels of different RON and MON and different chemistries. Fuels considered were primary reference fuels and toluene/n-heptane blends. The experiments were modeled with a single-zone adiabatic model together with detailed chemical kinetic models. In the model validation, co-oxidation reactions between the individual fuel components were found to be important in order to predict HCCI experiments, shock-tube ignition delay time data, and ignition delay times in rapid compression machines. The kinetic models with added co-oxidation reactions further predicted that an n-heptane/toluene fuel with the same RON as the corresponding primary reference fuel had higher resistance to auto-ignition in HCCI combustion for lower intake temperatures and higher intake pressures. However, for higher intake temperatures and lower intake pressures the n-heptane/toluene fuel and the PRF fuel had similar combustion phasing.  相似文献   

9.
Fuel stratification has the potential to extend the high load limits of homogeneous charge compression ignition (HCCI) combustion by improving the control over the combustion phase as well as reducing the maximum rate of pressure rise. In this work, experiments were carried out on a single-cylinder engine equipped with a dual-fuel-injection system – a port injector for preparing a homogeneous charge and a direct in-cylinder injector for creating the desired fuel stratification. The homogeneous charge was prepared using gasoline fuel while the fuel stratification was created with the in-cylinder injection of either gasoline or methanol during the compression stroke. The test results indicate that high load extension using gasoline for fuel stratification is limited by the trade-off between CO and NOx emissions. Weak gasoline stratification leads to an advanced combustion phase and an increase in NOx emission, while increasing the stratification with a higher quantity of gasoline direct injection, results in a significant deterioration in both the combustion efficiency and the CO emission. Engine tests using methanol for the stratification retarded the ignition timing and prolonged the combustion duration, resulting in a substantial reduction in the maximum rate of pressure rise and the maximum cylinder pressure – a prerequisite for HCCI high load extension. Further tests were then conducted with methanol stratification to extend the HCCI load limit and to optimize the stratified methanol-to-gasoline fuel ratio. Compared to gasoline HCCI, a 50% increase in the maximum IMEP attained was achieved with an acceptable maximum pressure rise rate of 0.5 MPa/°CA while maintaining a high thermal efficiency.  相似文献   

10.
We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI–HCCI combustion regime shifts.  相似文献   

11.
The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120–150 °C) and at different air–fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air–fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NOx emissions are lower than 10 ppm however HC and CO emissions are higher.  相似文献   

12.
The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether. The results show that dimethyl ether (DME) HCCI engine can work stably and can realize zero nitrogen oxides (NOx) emission and smokeless combustion under the compression ratio of both 10.7 and 14. The combustion process has obvious two stage combustion characteristics at ɛ = 10.7 (ɛ refers to compression ratio), and the combustion beginning point is decided by the compression temperature, which varies very little with the engine load; the combustion beginning point is closely related to the engine load (concentration of mixture) with the increase in the compression temperature, and it moves forward versus crank angle with the increase in the engine load at ɛ = 14; the combustion durations are shortened with the increase in the engine load under both compression ratios. __________ Translated from Chinese Journal Combustion Engine Engineering, 2006, 27(4): 9–12 [译自: 内燃机工程]  相似文献   

13.
The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed.Comparisons betweennumerical simulation and experiments showed a basic agreement.The combustion process of homogeneouscharge compression ignition(HCCI)engine whose piston surface has been coated with catalyst(rhodium andplatinum)was numerically investigated.A multi-dimensional model with detailed chemical kinetics was built.The effects of catalytic combustion on the ignition timing,the temperature and CO concentration fields,and HC,CO and NO_x emissions of the HCCI engine were discussed.The results showed the ignition timing of the HCCIengine was advanced and the emissions of HC and CO were decreased by the catalysis.  相似文献   

14.
The control of ignition timing in the homogeneous charge compression ignition (HCCI) of n-heptane by port injection of reaction inhibitors was studied in a single-cylinder engine. Four suppression additives, methanol, ethanol, isopropanol, and methyl tert-butyl ether (MTBE), were used in the experiments. The effectiveness of inhibition of HCCI combustion with various additives was compared under the same equivalence ratio of total fuel and partial equivalence ratio of n-heptane. The experimental results show that the suppression effectiveness increases in the order MTBE < isopropanol ? ethanol < methanol. But ethanol is the best additive when the operating ranges, indicated thermal efficiency, and emissions are considered. For ethanol/n-heptane HCCI combustion, partial combustion may be observed when the mole ratio of ethanol to that of total fuel is larger than 0.20; misfires occur when the mole ratio of ethanol to that of total fuel larger than 0.25. Moreover, CO emissions strongly depend on the maximum combustion temperature, while HC emissions are mainly dominated by the mole ratio of ethanol to that of total fuel. To obtain chemical mechanistic informations relevant to the ignition behavior, detailed chemical kinetic analysis was conducted. The simulated results also confirmed the retarding of the ignition timing by ethanol addition. In addition, it can be found from the simulation that HCHO, CO, and C2H5OH could not be oxidized completely and are maintained at high levels if the partial combustion or misfire occurs (for example, for leaner fuel/air mixture).  相似文献   

15.
The present work aimed to perform a comparative study between the hydrogen diesel homogeneous charge compression ignition (HDHCCI) and hydrogen diesel dual fuel (HDDF) modes with multiple injection regimens. The results showed that the maximum feasible hydrogen energy shares (HES) were 73.99% and 27.46% for the HDDF and HDHCCI modes in a single pulse injection. The level of efficiency increased while increasing HES in the HDHCCI mode for any injection regimen. Conversely, the level of efficiency decreased on increasing HES for the HDDF mode, however it yields higher efficiency than the HDHCCI mode at a steady HES operation. The extremely low NO emission was attained using single pulse and twin pulse HDHCCI modes as compared with HDDF mode, and vice versa for smoke and HC emissions, since the existence of cool flame due to too early injection timings drastically altered the combustion characteristics of HDHCCI mode.  相似文献   

16.
This article reports an experimental study on the combustion characteristics and emissions of homogenous charge compression ignition (HCCI) combustion using n-heptane doped with methyl tert-butyl ether (MTBE). The experiments were conducted on a single cylinder HCCI engine using neat n-heptane and 10%, 20%, 30%, 40% and 50% (by volume) MTBE/n-heptane blends at constant engine speed. The experimental results reveal that the ignition timing of the low temperature reaction (LTR) gets retarded, the peak values of heat release during the LTR decrease and the negative temperature coefficient (NTC) duration gets prolonged with the increase of MTBE in the blends. Consequently, the ignition timing of the high temperature reaction (HTR) gets delayed and both the attainable maximum indicated mean effective pressure (IMEP) and the lowest stable IMEP increase. Parametric studies on CO and HC emissions reveal that the maximum combustion temperature, pressure rise rate, IMEP, ignition timing of the HTR, combustion duration and fuel components have important impacts on HC emission, while the main parameters that show an important influence on CO emissions are the maximum combustion temperature, pressure rise rate, IMEP and combustion duration. Moreover, in order to suppress the CO and HC emissions to a low level, the maximum combustion temperature should be higher than 1500 K, the maximum pressure rise rate larger than 0.5 MPa/°CA, the IMEP above 0.3 MPa and the combustion duration shorter than 9 °CA.  相似文献   

17.
Autoignition of toluene and benzene is investigated in a rapid compression machine at conditions relevant to HCCI (homogeneous charge compression ignition) combustion. Experiments are conducted for homogeneous mixtures over a range of equivalence ratios at compressed pressures from 25 to 45 bar and compressed temperatures from 920 to 1100 K. Experiments varying oxygen concentration while keeping the mole fraction of toluene constant reveal a strong influence of oxygen in promoting ignition. Additional experiments varying fuel mole fraction at a fixed equivalence ratio show that ignition delay becomes shorter with increasing fuel concentration. Moreover, autoignition of benzene shows significantly higher activation energy than that of toluene. In addition, the experimental pressure traces for toluene show behavior of heat release significantly different from the results of Davidson et al. [D.F. Davidson, B.M. Gauthier, R.K. Hanson, Proc. Combust. Inst. 30 (2005) 1175–1182]. Predictability of various detailed kinetic mechanisms is also compared. Results demonstrate that the existing mechanisms for toluene and benzene fail to predict the experimental data with respect to ignition delay and heat release. Flux analysis is further conducted to identify the dominant reaction pathways and the reactions responsible for the mismatch of experimental and simulated data.  相似文献   

18.
DME均质充量压燃着火过程的数值模拟研究   总被引:9,自引:2,他引:9  
以新型发动机代用燃料二甲醚(DME)为例,采用最新研究的DME化学动力学反应机理(DME氧化机理包括336个基元反应,涉及78种组分),利用美国SANDIA国家实验室开发的cHEMKIN-Ⅲ软件,进行了DME均质充量压燃着火过程的数值模拟,并从理论上讨论分析了压缩比、进气温度、进气压力、燃空当量比、发动机转速对燃料着火时刻的影响。研究结果表明:DME的HCCI燃烧过程有明显的两阶段,压缩比、进气温度、进气压力、燃空当量比和发动机转速等参数的改变都会导致DME压燃着火过程的显著变化。  相似文献   

19.
Autoignition of iso-octane was examined using a rapid compression facility (RCF) with iso-octane, oxygen, nitrogen, and argon mixtures. The effects of typical homogeneous charge compression ignition (HCCI) conditions on the iso-octane ignition characteristics were studied. Experimental results for ignition delay times, τign, were obtained from pressure time-histories. The experiments were conducted over a range of equivalence ratios (?=0.25-1.0), pressures (P=5.12-23 atm), temperatures (T=943-1027 K), and oxygen mole fractions (χO2=9-21%), and with the addition of trace amounts of combustion product gases (CO2 and H2O). It was found that the ignition delay times were well represented by the expression
  相似文献   

20.
本文综述了改善HCCI低负荷着火添加剂的研究进展,着重介绍了添加剂的选择依据及添加剂改善着火的作用机理.本文指出二烷基过氧化物类燃油添加剂具有良好的应用前景和下一步需要解决的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号