首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte Carlo (kMC) simulation method and its surface height evolution can be adequately described by the stochastic Kuramoto-Sivashinsky equation (KSE), a fourth-order nonlinear stochastic partial differential equation (PDE). First, we estimate the four parameters of the stochastic KSE so that the expected surface roughness profile predicted by the stochastic KSE is close (in a least-square sense) to the profile of the kMC simulation of the same process. To perform this model parameter estimation task, we initially formulate the nonlinear stochastic KSE into a system of infinite nonlinear stochastic ordinary differential equations (ODEs). A finite-dimensional approximation of the stochastic KSE is then constructed that captures the dominant mode contribution to the state and the evolution of the state covariance of the stochastic ODE system is derived. Then, a kMC simulator is used to generate representative surface snapshots during process evolution to obtain values of the state vector of the stochastic ODE system. Subsequently, the state covariance of the stochastic ODE system that corresponds to the sputtering process is computed based on the kMC simulation results. Finally, the model parameters of the nonlinear stochastic KSE are obtained by using least-squares fitting so that the state covariance computed from the stochastic KSE process model matches that computed from kMC simulations. Subsequently, we use appropriate finite-dimensional approximations of the identified stochastic KSE model to design state and output feedback controllers, which are applied to the kMC model of the sputtering process. Extensive closed-loop system simulations demonstrate that the controllers reduce the expected surface roughness by 55% compared to the corresponding values under open-loop operation.  相似文献   

2.
This work addresses the problem of designing a fault-tolerant control system for fluid dynamic systems modeled by highly-dissipative partial differential equations (PDEs) with constrained control actuators. The proposed approach is predicated upon the idea of coordinating feedback controller synthesis and switching between multiple, spatially-distributed control actuator configurations. Using appropriate finite-dimensional approximations of the PDE system, a stabilizing feedback controller is designed for a given actuator configuration, and an explicit characterization of the constrained stability region is obtained. Switching laws are then derived, on the basis of these stability regions, to orchestrate the switching between the control actuator configurations, in a way that guarantees constraint satisfaction and preserves closed-loop stability of the infinite-dimensional system in the event of actuator failures. The results are demonstrated through an application of the proposed methodology to the suppression of wave formation in falling liquid films via the stabilization of the zero solution of the one-dimensional Kuramoto–Sivashinsky equation (KSE), with periodic boundary conditions, subject to actuator constraints and failures.  相似文献   

3.
This work focuses on predictive control of linear parabolic partial differential equations (PDEs) with boundary control actuation subject to input and state constraints. Under the assumption that measurements of the PDE state are available, various finite-dimensional and infinite-dimensional predictive control formulations are presented and their ability to enforce stability and constraint satisfaction in the infinite-dimensional closed-loop system is analyzed. A numerical example of a linear parabolic PDE with unstable steady state and flux boundary control subject to state and control constraints is used to demonstrate the implementation and effectiveness of the predictive controllers.  相似文献   

4.
The boundary feedback regulator design for heat exchangers with delayed feedback is developed. Counter-flow/parallel-flow heat exchanger systems described by a pair of coupled transport hyperbolic partial differential equations (PDEs) with delayed boundary feedback loop modeled by the boundary time lag are considered. The coupled transport hyperbolic PDEs and boundary delay by application of boundary transformation are transformed in the corresponding linear infinite-dimensional system utilized in the regulator design. The regulator design initially addresses a full state feedback controller realization augmented by the observer design to achieve simultaneously output exponential stabilization as well as tracking and disturbance rejection of polynomial and/or harmonic type of reference signals. The simulations studies demonstrate the proposed design for counter-flow and parallel-flow heat exchangers, two common configurations present in industrial practice.  相似文献   

5.
This work explores the design of a model predictive controller of the continuous pulp digester process consisting of the co-current zone and counter-current zone modeled by a set of nonlinear coupled hyperbolic partial differential equations (PDEs). The distributed parameter system of interest is not spectral, and slow–fast dynamic separation does not hold. To address this challenge, the nonlinear continuous-time model is linearized and discretized in time utilizing the Cayley–Tustin discretization framework, which ensures system theoretic properties and structure preservation without spatial discretization or model reduction. The discrete model is used in the full state model predictive controller design, which is augmented by the Luenberger observer design to achieve the output constrained regulation. Finally, a numerical example is provided to demonstrate the feasibility and applicability of the proposed controller designs.  相似文献   

6.
The problem of feedback control of spatially distributed processes described by highly dissipative partial differential equations (PDEs) is considered. Typically, this problem is addressed through model reduction, where finite dimensional approximations to the original infinite dimensional PDE system are derived and used for controller design. The key step in this approach is the computation of basis functions that are subsequently utilized to obtain finite dimensional ordinary differential equation (ODE) models using the method of weighted residuals. A common approach to this task is the Karhunen‐Loève expansion combined with the method of snapshots. To circumvent the issue of a priori availability of a sufficiently large ensemble of PDE solution data, the focus is on the recursive computation of eigenfunctions as additional data from the process becomes available. Initially, an ensemble of eigenfunctions is constructed based on a relatively small number of snapshots, and the covariance matrix is computed. The dominant eigenspace of this matrix is then utilized to compute the empirical eigenfunctions required for model reduction. This dominant eigenspace is recomputed with the addition of each snapshot with possible increase or decrease in its dimensionality; due to its small dimensionality the computational burden is relatively small. The proposed approach is applied to representative examples of dissipative PDEs, with both linear and nonlinear spatial differential operators, to demonstrate its effectiveness of the proposed methodology. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

7.
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subject to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.  相似文献   

8.
针对前向通道和反馈通道均存在随机时延和丢包现象的网络控制系统(NCSs),研究了关于离散时域下鲁棒H∞控制器的设计问题。采用伯努利分布描述随机时延和丢包现象,将闭环NCSs建模为随机参数系统。根据Lyapunov稳定性理论和增广状态空间法,得到闭环NCSs均方指数稳定的H∞性能判据;利用LMI技术和锥补线性化算法,给出动态输出反馈控制器的设计方法。最后,把这种方法应用于搅拌斧反应器中,仿真验证了所提控制器设计方法的有效性。  相似文献   

9.
A discrete-time, model-based output feedback control structure for nonlinear processes is developed in the present work. The structure makes use of a closed-loop observer, while at the same time it guarantees that the overall feedback controller possesses integral action. An algebraic transformation is applied on the observer states to insure that the input/output gain of the observer matches the model upon which the static state feedback control law is based. The resulting control algorithm is a two-degree-of-freedom control law, in the sense that the output and the set point are processed in different ways. The control structure is shown not only to have the same properties as the standard model-state feedback structure, but also that it emerges from a model algorithmic control framework. Finally, a simulation example using an exothermic CSTR operating at an open-loop unstable steady state is used to evaluate the closed-loop performance of the proposed method.  相似文献   

10.
The article deals with systematic development of linear model predictive control algorithms for linear transport‐reaction models emerging from chemical engineering practice. The finite‐horizon constrained optimal control problems are addressed for the systems varying from the convection dominated models described by hyperbolic partial differential equations (PDEs) to the diffusion models described by parabolic PDEs. The novelty of the design procedure lies in the fact that spatial discretization and/or any other type of spatial approximation of the process model plant is not considered and the system is completely captured with the proposed Cayley‐Tustin transformation, which maps a plant model from a continuous to a discrete state space setting. The issues of optimality and constrained stabilization are addressed within the controller design setting leading to the finite constrained quadratic regulator problem, which is easily realized and is no more computationally intensive than the existing algorithms. The methodology is demonstrated for examples of hyperbolic/parabolic PDEs. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2644–2659, 2017  相似文献   

11.
This work focuses on control of multi-input multi-output (MIMO) nonlinear processes with uncertain dynamics and actuator constraints. A Lyapunov-based nonlinear controller design approach that accounts explicitly and simultaneously for process nonlinearities, plant-model mismatch, and input constraints, is proposed. Under the assumption that all process states are accessible for measurement, the approach leads to the explicit synthesis of bounded robust multivariable nonlinear state feedback controllers with well-characterized stability and performance properties. The controllers enforce stability and robust asymptotic reference-input tracking in the constrained uncertain closed-loop system and provide, at the same time, an explicit characterization of the region of guaranteed closed-loop stability. When full state measurements are not available, a combination of the state feedback controllers with high-gain state observes and appropriate saturation filters, is employed to synthesize bounded robust multivariable output feedback controllers that require only measurements of the outputs for practical implementation. The resulting output feedback design is shown to inherit the same closed-loop stability and performance properties of the state feedback controllers and, in addition, recover the closed-loop stability region obtained under state feedback, provided that the observer gain is sufficiently large. The developed state and output feedback controllers are applied successfully to non-isothermal chemical reactor examples with uncertainty, input constraints, and incomplete state measurements. Finally, we conclude the paper with a discussion that attempts to put in perspective the proposed Lyapunov-based control approach with respect to the nonlinear model predictive control (MPC) approach and discuss the implications of our results for the practical implementation of MPC, in control of uncertain nonlinear processes with input constraints.  相似文献   

12.
The closed-loop dynamic behavior of nonlinear, multivanable systems is often unpredictable due to complex internal structures unaccounted for by linear control theory. Bifurcation analysis is used to explore the characteristics of such systems governed by linear feedback control. Two new theorems are presented concerning the local stability of a broad class of nonlinear, multivanable systems utilizing Proportional and Proportional-Integral control. A dynamic simulation of a binary distillation column reveals a number of interesting phenomena including limit cycle behavior in asymptotically stable areas of the controller gain space and steady-state multiplicity if a controller gain has the wrong sign.  相似文献   

13.
《Computers & Chemical Engineering》2006,30(11-12):2335-2345
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subject to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.  相似文献   

14.
In this work, a nonlinear output feedback control algorithm is proposed, in the spirit of model-state feedback control. The structure provides state estimates using a process model, the measured output, and the residual between the model output and the measured output. These estimates will track the process states at a rate determined by a set of tunable parameters. An algebraic transformation of the state estimates is incorporated in the control structure to ensure that the input/output gain of the observer matches the model upon which the static state feedback control law is based. The transformed states are then used in the control law. This leads to a controller of minimal order possessing integral action. The control structure is shown to have the same properties as the standard model-state feedback structure. The resulting algorithm is a two-degree of freedom control law, in the sense that the control action is not a function of the error only, but the output and the set point are processed in different ways. Finally, a simulation example using an exothermic CSTR operating at an open-loop unstable steady state is used to demonstrate the closed-loop performance of the proposed method.  相似文献   

15.
The paper deals with the modelling and adaptive control of a continuous-flow fermentation process for the production of alcohol. The fermenter model has been developed from mass balance and leads to nonlinear differential equations. In practice, control strategies are difficult to derive using this non-linear model. The dilution rate and the substrate concentration have been considered as control and controlled variables, respectively. The adaptive control algorithm implemented is based on the linear quadratic control approach, where the associated Riccati equation is iterated until the system closed-loop poles belong to a restricted stability domain which is included in the unit circle. A single input/output model is used for control purposes. The model parameters are estimated on-line using a robust identification algorithm which includes: data normalization, time-varying forgetting factor, covariance matrix factorization, etc. Experimental results show the performance of this adaptive scheme and its ability to control biotechnological processes.  相似文献   

16.
NONLINEAR MODEL PREDICTIVE CONTROL   总被引:3,自引:0,他引:3  
Nonlinear Model Predictive Control (NMPC), a strategy for constrained, feedback control of nonlinear processes, has been developed. The algorithm uses a simultaneous solution and optimization approach to determine the open-loop optimal manipulated variable trajectory at each sampling instant. Feedback is incorporated via an estimator, which uses process measurements to infer unmeasured state and disturbance values. These are used by the controller to determine the future optimal control policy. This scheme can be used to control processes described by different kinds of models, such as nonlinear ordinary differential/algebraic equations, partial differential/algebraic equations, integra-differential equations and delay equations. The advantages of the proposed NMPC scheme are demonstrated with the start-up of a non-isothermal, non-adiabatic CSTR with an irreversible, first-order reaction. The set-point corresponds to an open-loop unstable steady state. Comparisons have been made with controllers designed using (1) nonlinear variable transformations, (2) a linear controller tuned using the internal model control approach, and (3) open-loop optimal control. NMPC was able to bring the controlled variable to its set-point quickly and smoothly from a wide variety of initial conditions. Unlike the other controllers, NMPC dealt with constraints in an explicit manner without any degradation in the quality of control. NMPC also demonstrated superior performance in the presence of a moderate amount of error in the model parameters, and the process was brought to its set-point without steady-state offset.  相似文献   

17.
This work focuses on feedback control of particulate processes in the presence of sensor data losses. Two typical particulate process examples, a continuous crystallizer and a batch protein crystallizer, modeled by population balance models (PBMs), are considered. In the case of the continuous crystallizer, a Lyapunov-based nonlinear output feedback controller is first designed on the basis of an approximate moment model and is shown to stabilize an open-loop unstable steady-state of the PBM in the presence of input constraints. Then, the problem of modeling sensor data losses is investigated and the robustness of the nonlinear controller with respect to data losses is extensively investigated through simulations. In the case of the batch crystallizer, a predictive controller is first designed to obtain a desired crystal size distribution at the end of the batch while satisfying state and input constraints. Subsequently, we point out how the constraints in the predictive controller can be modified as a means of achieving constraint satisfaction in the closed-loop system in the presence of sensor data losses.  相似文献   

18.
19.
A methodology for combining multi-parametric programming and NCO tracking is presented in the case of linear dynamic systems. The resulting parametric controllers consist of (potentially nonlinear) feedback laws for tracking optimality conditions by exploiting the underlying optimal control switching structure. Compared to the classical multi-parametric MPC controller, this approach leads to a reduction in the number of critical regions. It calls for the solution of more difficult parametric optimization problems with linear differential equations embedded, whose critical regions are potentially nonconvex. Examples of constrained linear quadratic optimal control problems with parametric uncertainty are presented to illustrate the approach.  相似文献   

20.
应用Lyapunov函数及线性矩阵不等式技术研究了随机重复过程的鲁棒L2-L∞动态输出反馈控制问题,目的是设计一个全阶控制器使随机重复过程均方渐近稳定。给出鲁棒L2-L∞全阶控制器存在的充分条件,并将控制器的设计转化为一个凸优化的求解问题。所设计的控制器能够保证相对于所有能量有界的外界扰动信号,重复过程的L2-L∞性能指标小于一定值γ。仿真实例证实了该设计方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号